import numpy as np import operator import random import os def file2matrix(filePath):#从文本中提取特征矩阵和标签 f = open(filePath,'r+').readlines() fileLength = len(f) dataSet = np.zeros((fileLength,3),np.float64) labelList = [] for i in range(fileLength): row =…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: 1. 不喜欢的 2. 有点魅力的 3. 很有魅力的 你如何决定某个用户属于上述的哪一类呢?想必你会分析用户的信息来得到结论,比如该用户 "每年获得的飞行常客里程数","玩网游所消耗的时间比","每年消耗的冰淇淋公升数". 使用机器学习的K-近邻算法,可以帮助你在获取到用户的这三个信息后(或者更多信息 方法同理),自动帮助你对该用户进行分类,多方便呀! 本文…
上篇文章中提到了使用pillow对手写文字进行预处理,本文介绍如何使用kNN算法对文字进行识别. 基本概念 k最邻近算法(k-Nearest Neighbor, KNN),是机器学习分类算法中最简单的一类.假设一个样本空间被分为几类,然后给定一个待分类的特征数据,通过计算距离该数据的最近的k个样本来判断这个数据属于哪一类.如果距离待分类属性最近的k个类大多数都属于某一个特定的类,那么这个待分类的数据也就属于这个类.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来…
1 算法概述 1.1 优劣 优点:进度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 应用:主要用于文本分类,相似推荐 适用数据范围:数值型和标称型 1.2 算法伪代码 (1)计算已知类别数据集中的点与当前点的距离 (2)按照距离递增次序排序,选取与当前点距离最小的 k 个点 (3)确定前 k 个点所在类别的出现频率 (4)返回前 k 个点出现频率最高的类别作为当前点的预测分类 2 手写识别 2.1 概念 指在手写设备上书写时产生的轨迹信息转化为具体字码,本篇博客重点非搭建…
实战一:kNN手写识别系统 本文将一步步地构造使用K-近邻分类器的手写识别系统.由于能力有限,这里构造的系统只能识别0-9.需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:32像素*32像素的黑白图像. 当前使用文本格式存储图像,即使不能有效的利用空间,但是为了方便理解,还是将图像转换成文本格式. 示例:使用k-近邻算法的手写识别系统 (1)收集数据:提供文本文件. (2)处理数据:编写img2vector()函数,将图像格式转换成分类器使用的向量格式. (3)分析数据:在Pyt…
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
kNN算法算是机器学习入门级绝佳的素材.书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征比较,算法提取样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前K个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数.最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类”. 优点:精度高.对异常…
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/8027517.html 一.MNIST 运行 1)首先下载训练数据 在 http://yann.lecun.com/exdb/mnist/ 将四个包都下载下来,在下面代码的运行目录下创建MNIST_data目录,将四个包放进去 train-images-idx3-ubyte.gz: training s…