HDU6440 Dream】的更多相关文章

题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k<p,k∈Z}. 然后输出两个矩阵,第一个矩阵输出i+j的值,第二个矩阵输出i*j的值.(题意好难懂,你们怎么都看懂了!!) 思路: 由费马小定理得到,当p是质数的时候,ap-1 ≡ 1(mod p),两边同乘以a,也就是说当ap和a在取模p的时候相等 所以(m+n)p=m+n=mp+np(乘法为x*x%p…
题目链接:https://vjudge.net/problem/HDU-6440 知识点: 构造.费马小定理 题目大意: 给定一个素数 $p$,要求定义一个加法运算表和一个乘法运算表,尺寸都为 $p \times p$,加法运算表上第 $i$ 行第 $j$ 列的元素代表 $(i-1)+(j-1)$ 的值,乘法运算表上第 $i$ 行第 $j$ 列的元素代表 $(i-1) \times (j-1)$ 的值.要求满足两个条件: 一.对于任意 $0 \le n,m < p$,$(n+m)^p = n^p…
http://acm.hdu.edu.cn/showproblem.php?pid=6440 题意:让你重新定义任意一对数的乘法和加法结果(输出乘法口诀表和加法口诀表),使得m^p+n^p==(m+n)^p(p为质数),并且存在一个0<q<p使得 q^k(0<k<p)取遍1~p-1的所有值,并且该运算是封闭的(exists an integer q(0<q<p) to make the set {qk|0<k<p,k∈Z} equal to {k|0<…
保证 当  n^p=n(mod p) 是成立 只要保证n*m=n*m(mod p); #include<bits/stdc++.h> using namespace std; int main() { int T;scanf("%d",&T); while(T--) { int p;scanf("%d",&p); ;i<p;i++) { ;j<p;j++) { ) printf(" "); printf(&…
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面.  给定一个素数p,要求定义一个加法运算表和乘法运算表,使的\((m+n)^p=m^p+n^p(0≤m, n<p)\)成立. Solution:  费马小定理:\(a^{p-1} = 1 mod p(p是素数)\)  所以 \(a^p \;mod\; p = a^{p-1} \times a \;mod \;p = a…
题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\equiv (m+n)(mod\;p)$ $m^{p}\equiv m(mod\;p)$ $n^{p}\equiv n(mod\;p)$ 所以在模意义下,有$(m+n)^p=m^p+n^p$ 代码: #include<iostream> #include<cstdio> #include&…
    今年双十一淘宝推出了虚拟现实VR购物"BUY+",用户可以在虚拟环境中选购商品.那作为竞争对手的京东将使出什么绝招呢?在近日上海举办的谷歌开发者大会上得到了答案.会上京东推出了一款基于谷歌Tangao技术开发的国内首款AR购物应用.       这款名为JD Dream的AR应用吸引了无数人的目光,来自谷歌的工程师现场演示了JD Dream中AR购物的功能.目前这部分功能针对于家居家装,用户可挑选该场馆中的虚拟家居产品,并在手机上看到真实空间中1:1的摆放效果.用户可移动和旋转…
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares…
反复听着Dream It Possible,想起自己的华为岁月,百感交集!…
Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 7876 Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series…