第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
CTR学习笔记系列的第一篇,总结在深度模型称王之前经典LR,FM, FFM模型,这些经典模型后续也作为组件用于各个深度模型.模型分别用自定义Keras Layer和estimator来实现,哈哈一个是旧爱一个是新欢.特征工程依赖feature_column实现,这里做的比较简单在后面的深度模型再好好搞.完整代码在这里https://github.com/DSXiangLi/CTR 问题定义 CTR本质是一个二分类问题,$X \in R^N $是用户和广告相关特征, \(Y \in (0,1)\)…
人工智能,用计算机实现人类智能.机器通过大量训练数据训练,程序不断自我学习.修正训练模型.模型本质,一堆参数,描述业务特点.机器学习和深度学习(结合深度神经网络). 传统计算机器下棋,贪婪算法,Alpha-Beta修剪法配合Min-Max算法.AlphaGo,蒙特卡洛树搜索法(Monte Carlo tree search,MCTS)和深度卷积神经网络(deep convolutional neural network,DCNN).估值网络(value network,盘面评估函数),计算盘面分…
背景 这一篇我们从基础的深度ctr模型谈起.我很喜欢Wide&Deep的框架感觉之后很多改进都可以纳入这个框架中.Wide负责样本中出现的频繁项挖掘,Deep负责样本中未出现的特征泛化.而后续的改进要么用不同的IFC让Deep更有效的提取特征交互信息,要么是让Wide更好的记忆样本信息 Embedding + MLP 点击率模型最初在深度学习上的尝试是从简单的MLP开始的.把高维稀疏的离散特征做Embedding处理,然后把Embedding拼接作为MLP的输入,经过多层全联接神经网络的非线性变…
这一节我们总结FM三兄弟FNN/PNN/DeepFM,由远及近,从最初把FM得到的隐向量和权重作为神经网络输入的FNN,到把向量内/外积从预训练直接迁移到神经网络中的PNN,再到参考wide&Deep框架把人工特征交互替换成FM的DeepFM,我们终于来到了2017年... FNN FNN算是把FM和深度学习最早的尝试之一.可以从两个角度去理解FNN:从之前Embedding+MLP的角看,FNN使用FM预训练的隐向量作为第一层可以加快模型收敛.从FM的角度来看,FM局限于二阶特征交互信息,想要…
之前总结了PNN,NFM,AFM这类两两向量乘积的方式,这一节我们换新的思路来看特征交互.DeepCrossing是最早在CTR模型中使用ResNet的前辈,DCN在ResNet上进一步创新,为高阶特征交互提供了新的方法并支持任意阶数的特征交叉. 以下代码针对Dense输入更容易理解模型结构,针对spare输入的代码和完整代码…
这一节我们总结FM另外两个远亲NFM,AFM.NFM和AFM都是针对Wide&Deep 中Deep部分的改造.上一章PNN用到了向量内积外积来提取特征交互信息,总共向量乘积就这几种,这不NFM就带着element-wise(hadamard) product来了.AFM则是引入了注意力机制把NFM的等权求和变成了加权求和. 以下代码针对Dense输入感觉更容易理解模型结构,针对spare输入的代码和完整代码…
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步.在看两个model前建议对DeepFM, Deep&Cross, AFM,NFM都有简单了解,不熟悉的可以看下文章最后其他model的博客链接. 以下代码针对Dense输入更容易理解模型结构,针对spare输入的代码和完整代码 https://github.com/DSXiangLi/CTR xDeepFM 模型结构 看xDeepFM的名字和De…
本文用户记录黄埔学院学习的心得,并补充一些内容. 课程2:十行代码高效完成深度学习POC,主讲人为百度深度学习技术平台部:陈泽裕老师. 因为我是CV方向的,所以内容会往CV方向调整一下,有所筛检. 课程主要有以下三个方面的内容: 深度学习POC的基本流程 实用预训练模型应用工具快速验证 通用模型一键检测 十行代码完成工业级文本分类 自动化调参AutoDL Finetuner 一.深度学习POC的基本流程 1.1  深度学习发展历程 2006年,这一年多伦多大学的Geoffrey Hinton教授…
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?…