Models and Datasets 这一节没什么有用的信息为了保证教程完整性,这里仍然保留这一节. 这一节唯一提到的一点就是: Caffe2的模型文件后缀是:.pb2 结语: 转载请注明出处:http://www.jianshu.com/c/cf07b31bb5f2…
import numpy as np from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,LeaveOneOut,cross_val_score #模型选择数据集切分train_test_split模型 def test_train_test_split(): X=[[1,2,3,4], [11,12,13,14], [21,22,23,24], [31,32,33,34], [41,42,43,4…
编译ONNX模型Compile ONNX Models 本文是一篇介绍如何使用Relay部署ONNX模型的说明. 首先,必须安装ONNX包. 一个快速的解决方案是安装protobuf编译器,然后 pip install onnx –user 或者参考官方网站: https://github.com/onnx/onnx import onnx import numpy as np import tvm from tvm import te import tvm.relay as relay fro…
转载自:http://rensanning.iteye.com/blog/1601663 海量数据数据集 海量数据(又称大数据)已经成为各大互联网企业面临的最大问题,如何处理海量数据,提供更好的解决方案,是目前相当热门的一个话题.类似MapReduce. Hadoop等架构的普遍推广,大家都在构建自己的大数据处理,大数据分析平台. 相应之下,目前对于海量数据处理人才的需求也在不断增多,此类人才可谓炙手可热!越来越多的开发者把目光转移到海量数据的处理上.但是不是所有人都能真正接触到,或者有机会去处…
models之字段类型和参数 示例: # class Test(models.Model): # courses_test # """测试学习用""" # # Auto = models.AutoField() # 自增长字段 # # BigAuto = models.BigAutoField() # # # 二进制数据 # Binary = models.BinaryField() # # # 布尔型 # Boolean = models.Bo…
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads133/doc/fileformat/568756/HMM-DL.pdf本文讲述了 HMM原理,方法,典型应用 http://www.cnblogs.com/tsingke/p/3923169.html  HMM(隐马尔科夫模型)基本原理及其实现 http://wenku.baidu.com/lin…
1. 数据集 dataset_train = gluon.data.ArrayDataset(X_train, y_train) data_iter = gluon.data.DataLoader(dataset_train, batch_size, shuffle=True) for data, label in data_iter: ... 2. 模型 gluon.nn:神经网络 gluon.nn.Sequential(),可添加: gluon.nn.Flatten() ⇒ Flattens…
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个三元组(π,A,B)来定义: π 表示初始状态概率的向量 A =(aij)(隐藏状态的)转移矩阵P(Xit|Xj(t-1))t-1时刻是j而t时刻是i的概率 B =(bij)混淆矩阵 P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率 值得注意的是,在状态转移矩阵中的每个概率都是时间无…
Django数据库操作是十分重要的内容,这两天简单学习了数据库的操作,这里做个总结. 1.ORM简介 简单的来说,ORM就是对象-关系-映射.它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库. 2.创建模型前的准备 在settings中配置databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME':'myorm_test', #需要连…
Datasets These datasets can be used for benchmarking deep learning algorithms: Symbolic Music Datasets Piano-midi.de: classical piano pieces (http://www.piano-midi.de/) Nottingham : over 1000 folk tunes (http://abc.sourceforge.net/NMD/) MuseData: ele…