DStreamGraph有点像简洁版的DAG scheduler,负责根据某个时间间隔生成一序列JobSet,以及按照依赖关系序列化.这个类的inputStream和outputStream是最重要的属性.spark stream将动态的输入流与对流的处理通过一个shuffle来连接.前面的(shuffle map)是input stream,其实是DStream的子类,它们负责将收集的数据以block的方式存到spark memory中:而output stream,是另外的一系类DStrea…
1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔.这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置…
1.为什么引入Backpressure 默认情况下,Spark Streaming通过Receiver以生产者生产数据的速率接收数据,计算过程中会出现batch processing time > batch interval的情况,其中batch processing time 为实际计算一个批次花费时间, batch interval为Streaming应用设置的批处理间隔.这意味着Spark Streaming的数据接收速率高于Spark从队列中移除数据的速率,也就是数据处理能力低,在设置…
5.1 DStreamGraph对象分析 在Spark Streaming中,DStreamGraph是一个非常重要的组件,主要用来: 1. 通过成员inputStreams持有Spark Streaming输入源及接收数据的方式 2. 通过成员outputStreams持有Streaming app的output操作,并记录DStream依赖关系 3. 生成每个batch对应的jobs 下面,通过分析一个简单的例子,结合源码分析来说明DStreamGraph是如何发挥作用的.案例如下: val…
4.1 初始化StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) val ssc = new StreamingContext(conf, Seconds(1)) // 可以通过 ssc.sparkContext 来访问 SparkContext // 或者通过已…
Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是JobScheduler的启动. StreamingContext启动 我们首先看下start方法的上半部分. 首先进行模式匹配,这是一个标准的条件判断,默认是INITIALIZED状态. 这里有三个关键部分: validate方法,会进行一些前置条件的判断.其中比较关键的是对DStreamGraph进…
Spark Streaming揭秘 Day3 运行基石(JobScheduler)大揭秘 引子 作为一个非常强大框架,Spark Streaming兼具了流处理和批处理的特点.还记得第一天的谜团么,众多的Job形成了其血肉,而其背后都是有JobScheduler来支撑,这也是Spark Streaming运行的基石.这块代码非常的简明,让我们学习一下. 1.从启动代码开始 从ssc的启动代码中,一眼就能发现,最重要的部分就是JobScheduler的启动 再次深入,我们发现实际上是启动了两个组件…
先给出一个job从被generate到被执行的整个过程在JobGenerator中,需要定时的发起GenerateJobs事件,而每个job其实就是针对DStream中的一个RDD,发起一个SparkContext.runJob,通过对DStream中每个RDD都runJob来模拟流处理 //StreamingContext.scala private[streaming] val scheduler = new JobScheduler(this) //JobScheduler.scala p…
本节主要内容: 一.SparkStreaming Job生成深度思考 二.SparkStreaming Job生成源码解析 JobScheduler的地位非常的重要,所有的关键都在JobScheduler,它的重要性就相当于是Spark Core当中的DAGScheduler,因此,我们要花重点在JobScheduler上面. 我们在进行sparkstreaming开发的时候,会对Dstream进行各种transform和action级别的操作,这些操作就构成Dstream graph,也就是D…
本期内容 : JobScheduler内幕实现 JobScheduler深度思考 JobScheduler 是整个Spark Streaming调度的核心,需要设置多线程,一条用于接收数据不断的循环,另外一条是处理线程,同时需要把调度与执行分离开. 一. 作业流程源码 : 首先只要定义了BatchDuration后就规定了按照什么样的频率生成具体的Job ,也就是Job生成的频率: 按照一定的频率操作ForeachRDD : 我们设置每隔5秒钟都会生成一个Spark 的Job ,Job其实其内部…