传送门 思路 首先有一个\(O(n^2)\)的简单DP:设\(dp_{x,w}\)为\(x\)的权值为\(w\)的概率. 假设\(w\)来自\(v1\)的子树,那么有 \[ dp_{x,w}=dp_{v1,w}\times (p\times \sum_{w'>w}dp_{v2,w'}+(1-p)\sum_{w'<w}dp_{v2,w'}) \] 其中\(p\)表示\(x\)选较小权值的概率. 由于每个点的状态数只有子树中的叶子个数,可以考虑线段树合并来优化这一DP过程. merge(k1,k2…
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小是大于当前权值的部分 然后考虑怎么优化 用线段树合并来做 每次向左递归的时候就把x右子树对y左子树的贡献加上,把y右子树对x左子树的贡献加上 每次向左递归的时候就把x左子树对y右子树的贡献加上,把y左子树对x右子树的贡献加上 考虑每个节点,左边的区间贡献一定会被统计完全,右边的区间贡献一定会被统计完…
题目链接 loj2537 题解 观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率 先离散化一下权值 显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\)的概率 如果\(i\)是叶节点显然 如果\(i\)只有一个儿子直接继承即可 如果\(i\)有两个儿子,对于儿子\(x\),设另一个儿子为\(y\) 则有 \[f[i][j] += f[x][j](1 - p_i)\sum\limits_{k > j}f[r][k] + f[x][j]p_i\sum\…
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_a'\)表示\(f[y][a]\),\(P_i\)表示给定的\(i\)取最大值作为权值的概率. 转移就是两棵树之间的权值组合,即以\(x\)子树中的\(a\)作为最小值的概率为\(p_a\times\sum\limits_{v>a}p_v'\times(1-P_i)\),以\(x\)子树中的\(a\…
好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子结点的个数 显然,\(i\) 出现 \(j\) 的概率为 \[f_{i,j} = f_{l,j} * (p_i \sum_{k=1}^{j-1}f_{r,k} + (1-p_i)\sum_{k=j+1}^{m}f_{r,k}) + f_{r,j} * (p_i \sum_{k=1}^{j-1}f_{…
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照长度来排一个序. 如果询问和加边长度相同,这加边优先. 对于每一个连通块进行权值线段树. 权值线段树解决\(k\)大的问题. 每一次合并,并查集判联通,线段树暴力合并. 时间复杂度\(O(nlogn)\). 代码 #include <bits/stdc++.h> using namespace s…
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum_{j < i} + (1 - p)\sum_{j > i}f_{r,j}) + f_{r,i}(p\sum_{j < i}f_{l,i} + (1 - p)\sum_{j > i}f_{l,j}) $ 对于每个节点s维护当前节点所有可能的概率和 ,线段树合并 代码 #include&…
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可. #include <cstdio> #include <cmath> #define sl (x<<1) #define sr (x<<1|1) #define MAXN 100010 using namespace std; struct nod{ int…
今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好了啊5555.... 场上$60pts$消失... 显然,我们可以用$f[i][j]$表示节点$i$值为第$j$大的值的概率. 我们不难列出$dp$式子,$f[i][j]=f[s1][j] \times (s[s2][j-1]\times p+(s[s2][m]-s[s2][j])\times (1…
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感觉已经很难做到比$O(n^2)$更优的复杂度了,但我们要看到题目里有什么条件没用上:每个节点最多有2个儿子. 这个提醒我们可以用启发式合并,据说splay可以做,但我们可以考虑一下线段树合并做法. 仍然采用上面的转移方程,这里线段树上的一个节点T[x]表示x表示的区间[L,R]最终成为当前子树的根的…