三维空间建模方法之LOD模型算法】的更多相关文章

什么是LOD LOD也称为层次细节模型,是一种实时三维计算机图形技术,最先由Clark于1976年提出,其工作原理是: 视点离物体近时,能观察到的模型细节丰富:视点远离模型时,观察到的细节逐渐模糊.系统绘图程序根据一定的判断条件,选择相应的细节进行显示,从而避免了因绘制那些意义相对不大的细节而造成的时间浪费,同时有效地协调了画面连续性与模型分辨率的关系. 示例图: 地形LOD模型算法 地形里面的LOD算法可以分为:非连续LOD模型.连续LOD模型以及节点LOD模型. 非连续LOD模型:它实质上保…
                             基于点云的3ds Max快速精细三维建模方法及系统的制作方法[技术领域][0001]本发明涉及数字城市三维建模领域,尤其涉及一种基于点云的3ds Max快速精细三维建模方法及系统.[背景技术][0002]目前,数字城市建模主要有三种方式:利用三维建模软件人工建模.利用激光点云建模.利用航空立体像对建模.利用三维建模软件,如3ds Max.AutoCAD.SketchUp进行建模属于传统方式,虽然能在模型精细程度上有很大的保证,但无法满足城…
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手把手教你搞定微分方程. 通过二阶 RLC 电路问题,学习微分方程模型的建模.求解和讨论. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 微分方程 1.1 基本概念 微分方程是描述系统的状态随时间和空间演化的数学工具.物理中许多涉及变力的运动学.动力学问题,如空…
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,…
http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利克雷分布LDA] Spark实现LDA的GraphX基础 在Spark 1.3中,MLlib现在支持最成功的主题模型之一,隐含狄利克雷分布(LDA).LDA也是基于GraphX上构建的第一个MLlib算法,GraphX是实现它最自然的方式. 有许多算法可以训练一个LDA模型.我们选择EM算法,因为它…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
一步步教你轻松学KNN模型算法( 白宁超 2018年7月24日08:52:16 ) 导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用.本文通过一个模拟的实际案例进行讲解.整个流程包括:采集数据.数据格式化处理.数据分析.数据归一化处理.构造算法模型.评估算法模型和算法模型的应用.(本文原创,转载必须注明出处: 一步步教你轻松学KNN模型算法) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学习:一步步教你轻松学…
TLM(事务级建模方法,Transaction-level modeling)是一种高级的数字系统模型化方法,它将模型间的通信细节与函数单元或通信架构的细节分离开来.通信机制(如总线或者FIFO)被建模成信道,并且以SystemC接口类的形式向模块呈现.事务请求一般在调用这些信道模型的接口函数时发生,而接口函数封装了信息交换的底层细节.在事务层面上,TLM更强调数据传输的功能本身——数据的内容和传输的起止点,并尽可能少涉及具体实现.这种方法使得系统级设计者测试不同的总线架构(这些架构均支持公共的…
转自:https://www.jianshu.com/p/8378b80e4b21 概述数据仓库这个概念是由 Bill Inmon 所提出的,其功能是将组织通过联机事务处理(OLTP)所积累的大量的资料和数据,通过数据仓库理论所特点有的信息存储架构,进行系统的分析整理,利用各种的分析方法,比如联机分析处理(OLAP),数据挖掘(Data Mining),进而支持如决策支持系统(DSS).主管资讯系统(EIS)的创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定及快速回应外…
EDADS系统包含了众多的时序模型和异常检测模型,这些模型的处理会输入很多参数,若仅使用默认的参数,那么时序模型预测的准确率将无法提高,异常检测模型的误报率也无法降低,甚至针对某些时间序列这些模型将无法使用. 若想有效地使用EGADS系统,那么必须了解EGADS系统的核心算法思想,并据此调优模型参数,来提高异常检测的准确率.降低误报率. 笔者通过阅读EDADS系统的TimeSeries模型和AnomalyDetection模型的源码,整理了模型的处理流程和常用算法的核心思想.如本文有理解错误之处…