【[SCOI2010]生成字符串】】的更多相关文章

[SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? 输入格式:输入数据是一行,包括2个数字n和m; 输出格式:输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数; Solution 1…
P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? 输入输出格式 输入格式: 输入数据是一行,包括2个数字n和m 输出格式: 输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数 思路:模…
题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? 输入输出格式 输入格式: 输入数据是一行,包括2个数字n和m 输出格式: 输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数 输入输出样例 输入样例#1: 2 2 输出样例#1:…
题目 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? 输入格式 输入数据是一行,包括2个数字n和m 输出格式 输出数据是一行,包括1个数字,表示满足要求的字符串数目,这个数可能会很大,只需输出这个数除以20100403的余数 输入样例 2 2 输出样例 2 提示 [数据范围] 对于30%的数据,保证…
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \] 关于它的证明 当然也有递推式 \[f(n)=\sum\limits_{i=0}^{n-1}f(i)\ast f(n-i-1) \] 最常用的则是对于通项的变形式 \[f(n)={2n\choose n}-{2n\choose n-1} \] 在此给出一较易的证明 例题 我们来看一道例题洛谷 p1…
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示这一位为\(1\). 向右下角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(-1\),表示这一位为\(1\). 若不考虑题目中的限制,那么这就相当于从\((0, 0)\)出发,走\(n + m\)步到达\((n + m, n - m)\). 相当于从\(n + m\)步中选出\(n\)步向…
Description 有$N$ 个 $1$ 和 $M$ 个 $0$ 组成的字符串, 满足前 $k$ 个字符中 $1$ 的个数不少于 $0$ 的个数. 求这样字符串的个数. $1<=M <=N<=1e6$ Solution 正难则反, 很难直接求出满足条件的字符串的个数, 就从反面考虑. $N$个$1$ 和 $M$ 个 $0$ 组成的字符串总共有 $C(N + M, N)$ 个, 再减去不满足条件的 字符串的个数就能够得到答案了. 不满足条件的字符串个数为$C(N+M,N+1)$ 证明与…
\(n=m\)时候经典的卡特兰 那\(n!=m\)呢,还是按照卡特兰的方式来推 首先总情况数就是\(\binom{n+m}{n}\),在\(n+m\)个里选择\(n\)个\(1\) 显然有不合法的情况,减掉它们 对于一种不合法的情况,必然存在一个前缀\(0\)的个数比\(1\)多\(1\) 我们考虑构造出一个由\(n+1\)个\(1\)和\(m-1\)个\(0\)组成的序列,其必然存在一个前缀使得\(1\)的个数比\(0\)多\(1\) 于是就能一一对应了 也可以这样理解,对于每一个不合法的情况…
题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为素数,根据费马小定理 x的P-2次方 就是x在P的意义下的逆元.只需要求出逆元然后就可以直接乘了. 貌似是有点水 Coding #include<bits/stdc++.h> using namespace std; const long long P = 20100403; long long…
传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1,后面可以多放一个0,所以\(k\)加1,即\[f_{i+1,j,k-1}+=f_{i,j,k}\]\[f_{i+1,j+1,k+1}+=f_{i,j,k}\] 这样子还是不好优化,,, 我们可以把问题抽象化,把这个放字符过程转化为从平面直角坐标系的\((0,0)\)走到\((n,m)\),其中放1…