POJ2248 Addition Chains 迭代加深】的更多相关文章

Addition Chains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5454   Accepted: 2923   Special Judge Description An addition chain for n is an integer sequence <a0, a1,a2,...,am="">with the following four properties: a0 = 1 a…
不知蓝书的标程在说什么,,,,于是自己想了一下...发现自己的代码短的一批... 限制搜索深度+枚举时从大往小枚举,以更接近n+bool判重,避免重复搜索 #include<cstdio> #include<iostream> #include<cstring> #define R register int using namespace std; inline int g() { R ret=; register char ch; while(!isdigit(ch=…
题目链接:http://bailian.openjudge.cn/practice/2248 题解: 迭代加深DFS. DFS思路:从目前 $x[1 \sim p]$ 中选取两个,作为一个新的值尝试放入 $x[p+1]$. 迭代加深思路:设定一个深度限制,一旦到达这个界限,即继续往下搜索:该深度限制从 $1$ 开始,每次自加 $1$.这么做的好处是,正好也符合题目要求的最短的数组长度. AC代码: #include<bits/stdc++.h> using namespace std; ];…
[题目描述] An addition chain for n is an integer sequence with the following four properties: a0 = 1 am = n a0 < a1 < a2 < ... < am-1 < am For each k (1<=k<=m) there exist two (not necessarily different) integers i and j (0<=i, j<=k…
Description An addition chain for n is an integer sequence  with the following four properties: a0 = 1 am = n a0<a1<a2<...<am-1<am For each k ( ) there exist two (not neccessarily different) integers i and j ( ) with ak =ai +aj You are give…
An addition chain for n is an integer sequence <a0, a1,a2,...,am=""> with the following four properties: a0 = 1 am = n a0 < a1 < a2 < ... < am-1 < am For each k (1<=k<=m) there exist two (not necessarily different) int…
此题不难,主要思路便是IDDFS(迭代加深搜索),关键在于优化. 一个IDDFS的简单介绍,没有了解的同学可以看看: https://www.cnblogs.com/MisakaMKT/articles/10767945.html 我们可以这么想,设当前规定长度为M,题目要求得出的数为N. 在搜索中,当前的步数为step,当前的数列为 数组a. 首先来确定思路,便是在以得出的数列a中枚举每两个数相加得出sum,然后继续搜索下一步. 初步的代码便是: void iddfs(int step) {…
發現m不會特別大,也就是層數比較淺,所以採用迭代加深 由於xi+xj可能相同,所以開一下vis數組判斷重複 #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; int n,x[maxn],ceil; ]; bool dfs(int dep,int now){ if(dep>ceil)return x[ceil]==n; ;i>=;i--){ ;j--){//…
Addition Chains 题面 对于一个数列 \(a_1,a_2 \dots a_{m-1},a_m\) 且 \(a_1<a_2 \dots a_{m-1}<a_m\). 数列中的一个数 \(a_k(2<k<=m)\) ,都有两个数 \(a_i,a_j(1<=i,j<k)\) 满足 \(a_i+a_j=a_k\)( \(i\) 可以等于\(j\) ). 换句话说就是 \(a_k\) 前面有两个数可以加起来等于 \(a_k\)​ .这种数列就是加法链. 题目输入一个…
  Addition Chains  An addition chain for n is an integer sequence  with the following four properties: a0 = 1 am = n a0<a1<a2<...<am-1<am For each k ( ) there exist two (not neccessarily different) integers i and j ( ) with ak =ai +aj You a…