Catalan数计算及应用】的更多相关文章

Catalan数列是非常奇妙的一列数字,因为很多问题的解就是一个Catalan数.知道了这一规律,很多看似复杂的问题便可迎刃而解.那么什么是Catalan数,什么样的问题的解是Catalan数呢? 1,Catalan数 先来看一段Catalan数列:1,1,2,5,14,42,132,429,1430,4862,16796,即 h(0)=1,h(1)=1,h(2)=2,h(3)=5... 怎么求出来的呢?两种方式 (1) h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-…
应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数表示答案 样例输入 Sample Input 6 样例输出 Sample Output 132 数据范围及提示 Data Size & Hint 1<=n&l…
一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为 令其为h(n)的话,满足h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) 我们从中取出的Cn就叫做第n个Catalan数,前几个Catalan数是:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,…
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
问题描述: 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 这个笔试题,很YD,因为把某个递归关系隐藏得很深. 问题分析: 我们先把这12个人从低到高排列,然后,选择6个人排在第一排,那么剩下的6个肯定是在第二排. 用0表示对应的人在第一排,用1表示对应的人在第二排,那么含有6个0,6个1的序列,就对应一种方案. 比如000000111111就对应着 第一排:0 1 2 3 4 5 第二排:6 7 8 9 10 11 010101010…
题目链接:option=com_onlinejudge&Itemid=8&page=show_problem&problem=1253">10312 - Expression Bracketing 题意:有n个x,要求分括号,推断非二叉表达式的个数. 思路:二叉表达式的计算方法就等于是Catalan数的,那么仅仅要计算出总数,用总数减去二叉表达式个数.得到的就是非二叉表达式的个数. 那么计算方法是什么呢. 看题目中的图,对于n = 4的情况,能够分为这几种情况来讨论…
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/article/details/6776182 #include<cstdio> #include<cstring> #include<string> #include<queue> #include<iostream> #include<algorit…
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1)=1,Catalan数满足递归式:h(n) = h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1),n>=2该递推关系的解为:h(n) = C(2n-2,n-1)/n,n=1,2,3,...(其中C(2n-2,n-1)表示2n-2个中取n-1个的组合数) 问题描…
一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0)  (n>=2) 该递推关系的解为:h(n) = C(2n,n)/(n+1),n=0,1,2,3,... (其中C(2n,n)表示2n个物品中取n个的组合数) 二.问题描述 12个高矮不同的人,排成两排,每排必须是从矮到高排列,而且第二排比对应的第一排的人高,问排列方式有多少种? 问题分析: 我们先把这12个…
Catalan数首先是由Euler在精确计算对凸n边形的不同的对角三角形剖分的个数问题时得到的,它经常出现在组合计数问题中.     问题的提出:在一个凸n边形中,通过不相交于n边形内部的对角线,把n边形拆分成若干三角形,不同的拆分数目用hn表示,hn即为Catalan数.例如五边形有如下五种拆分方案(图3-14),故h5=5.求对于一个任意的凸n边形相应的hn.   Catalan数是比较复杂的递推关系,尤其在竞赛的时候,选手很难在较短的时间里建立起正确的递推关系.当然,Catalan数类的问…