POJ - 1845 简单数论】的更多相关文章

求A^B的约数和模MOD 对A质因子分解P1^k1*P2^k2....P^kn A^B既指数对应部分乘以B 对于每个P都有(1+P^1+P^2+...+P^ki)的选择 连乘每一个P的等比数列之和即可 这里用了分治法,我觉得有必要记一下,不然推错就麻烦了 奇数部分sum(p,c)=(1+p^(c+1>>1))sum(p,c-1>>1) 偶数部分sum(p,c)=(1+p^(c>>1))sum(p,c/2-1)+p^c 还有质因子分解不要忘了a>1啊 还有ans是乘…
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然就是0了,需要特判一下,但是poj好像没有为0的数据,能AC.先不改了.) 后来看了好多人的博客,发现很少用费马小定理写的,或者写的代码我看不下去..就先用那个什么二分等比数列写了一下. 过程也不说了,很多博客都说了.([1][2]): #include<iostream> #include<…
题目链接 题意:求 A^B的所有约数之和对9901取模后的结果. 分析: 看了小优的博客写的. 分析来自 http://blog.csdn.net/lyy289065406/article/details/6648539 (1)   整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)   约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^…
[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   当中pi均为素数 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的全部因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1…
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#include<math.h>#include<iostream>#include<algorithm>#include<string.h>using namespace std;#define MOD 9901const int MAXN=10000;int p…
题目大意:输入一个整数n,输出使2^x mod n = 1成立的最小值K 解题思路:简单数论 1)n可能不能为偶数.因为偶数可不可能模上偶数以后==1. 2)n肯定不可能为1 .因为任何数模上1 == 0: 3)所以n肯定是除1外的奇数 代码如下: #include <iostream> using namespace std; int main(){ int n; while(scanf("%d",&n)!=EOF){ if(n == 1 || n % 2 ==…
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a叫做b的倍数. [质因数分解] 把一个正整数数分解成几个质数的幂相乘的形式叫做质因数分解. e.g. 10=2*5 16=24 18=2*32 [唯一分解定理] 唯一分解定理(算术基本定理)可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积: N=P1a1*P2a2*P…
传送门 简单数论暴力题. 题目简述:要求求出所有满足x2≡1mod&ThinSpace;&ThinSpace;nx^2\equiv1 \mod nx2≡1modn且0≤x<n0\le x<n0≤x<n的xxx 考虑到使用平方差公式变形. (x−1)(x+1)≡0mod&ThinSpace;&ThinSpace;n(x-1)(x+1)\equiv0 \mod n(x−1)(x+1)≡0modn 即(x−1)(x+1)=kn(x-1)(x+1)=kn(x−1)…
Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) for( int j = i; j <= n; j++ ) if( lcm(i, j) ==…
Help Hanzo (LightOJ - 1197) [简单数论][筛区间质数] 标签: 入门讲座题解 数论 题目描述 Amakusa, the evil spiritual leader has captured the beautiful princess Nakururu. The reason behind this is he had a little problem with Hanzo Hattori, the best ninja and the love of Nakurur…