本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnblogs.com/hapjin/p/6078530.html 下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现 数据加载到Matlab中的格式如下: 一共有5000个训练样本,每个训练样本是400维的列向量(20X…
本作业使用神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),请参考:http://www.cnblogs.com/hapjin/p/6085278.html 由于逻辑回归是线性分类(它的假设函数是一个线性函数,就是划一条直线,把数据分成了两类.可参考这篇文章中的:②使用逻辑回归来实现多分类问题(one-vs-all) 部分 的图片) 对于一些复杂的类别,逻辑回归就解决不了了.比如下面这个图片中的分类.(无法通…
在本练习中,先介绍了SVM的一些基本知识,再使用SVM(支持向量机 )实现一个垃圾邮件分类器. 在开始之前,先简单介绍一下SVM ①从逻辑回归的 cost function 到SVM 的 cost function 逻辑回归的假设函数如下: hθ(x)取值范围为[0,1],约定hθ(x)>=0.5,也即θT·x  >=0时,y=1:比如hθ(x)=0.6,此时表示有60%的概率相信 y 等于1 显然,要想让y取值为1,hθ(x)越大越好,因为hθ(x)越大,y 取值为1的概率也就越大,也即:更…
本文根据水库中蓄水标线(water level) 使用正则化的线性回归模型预 水流量(water flowing out of dam),然后 debug 学习算法 以及 讨论偏差和方差对 该线性回归模型的影响. ①可视化数据集 本作业的数据集分成三部分: ⓐ训练集(training set),样本矩阵(训练集):X,结果标签(label of result)向量 y ⓑ交叉验证集(cross validation set),确定正则化参数 Xval 和 yval ⓒ测试集(test set)…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
问题描述:使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 一.逻辑回归实现: 数据加载到octave中,如下图所示: ①样本数据的可视化 随机选择100个样本数据,使用Octave可视化的结果如下: ②使用逻辑回归来实现多分类问题(one-vs-all) 所谓多分类问题,是指分类的结果为三类以上.比如,预测明天的天气结果为三类:晴(用y==1表示).阴(用y==2表示).雨(用y==3表示) 分类的思想,其实与逻辑…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spark.ml.feature…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator i…
作业说明 Exercise 2,Week 3,使用Octave实现逻辑回归模型.数据集  ex2data1.txt ,ex2data2.txt 实现 Sigmoid .代价函数计算Computing Cost 和 梯度下降Gradient Descent. 文件清单 ex2.m - Octave/MATLAB script that steps you through the exercise ex2 reg.m - Octave/MATLAB script for the later part…