Probability Concepts】的更多相关文章

Probability Concepts Unconditional probability and Conditional Probability Unconditional Probability (a.k.a. marginal probability): refer to the probability off an event regardless of the past or future occurrence of other events. Conditional Probabi…
Basic Concepts Probability concepts Terms Random variable A quantity whose possible values are uncertain. Outcomes The possible values of a random variable. Event A specified set of outcomes. Properties 0 <= P(E) <=1 Events Odds (赔率) Odds for the ev…
其实算法本身不难,第一遍可以只看伪代码和算法思路.如果想进一步理解的话,第三章那些标记法是非常重要的,就算要花费大量时间才能理解,也不要马马虎虎略过.因为以后的每一章,讲完算法就是这样的分析,精通的话,很快就读完了.你所说的证明和推导大概也都是在第三章介绍了,可以回过头再认真看几遍. 至于课后题,比较难,我只做了前几章,如果要做完需要更多时间和精力.这可以通过之后做算法题来弥补,可以去leetcode等网站找一些经典的算法题做一做,加深理解. Facebook的工程师写的攻略,介绍了用算法导论来…
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning   How do I learn mathematics for machine learning? Promoted by Time Doctor Software for productivity tracking. Time tracking and productivity improvement software with screenshots…
何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布(i.i.d)的. 最大似然估计的一般求解过程: (1) 写出似然函数: (2) 对似然函数取对数,并…
Chapter 1 Interesting read, but you can skip it. Chapter 2 2.1 Insertion Sort - To be honest you should probably know all major sorting algorithms, not just insertion sort. It's just basic knowledge and you never know when it can help.2.2 Analysis of…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Parallel Forall that aims to provide an intuitive and gentle introduction todeep learning. It covers the most important deep learning concepts and aims…
Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 CommentsTagged cuDNN, Deep Learning, Deep Neural Networks, Machine Learning,Neural Networks   This post is the first in a series I’ll be writing for Paral…
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 Hilbert spaces Chapter 5 Fourier series Chapter 6 Operations on measures Chapter 7 The fundamental theorem of the integral calculus Chapter 8 Measura…