文本挖掘之文本聚类(OPTICS)】的更多相关文章

刘 勇  Email:lyssym@sina.com 简介 针对大数量的文本数据,采用单线程处理时,一方面消耗较长处理时间,另一方面对大量数据的I/O操作也会消耗较长处理时间,同时对内存空间的消耗也是很大,因此,本文引入MapReduce计算模型,以分布式方式处理文本数据,以期提高数据处理速率.本文结合Kmeans和DBSCAN算法,对上述算法进行改进,其中借鉴Kmeans聚类方法(类别个数的确定性)以及DBSCAN聚类方法(基于密度),并在数据处理过程中引入多个Reducer对数据进行归并处理…
刘 勇  Email:lyssym@sina.com 简介 鉴于DBSCAN算法对输入参数,邻域半径E和阈值M比较敏感,在参数调优时比较麻烦,因此本文对另一种基于密度的聚类算法OPTICS(Ordering Points To Identify the Clustering Structure)展开研究,该算法是DBSCAN的改进算法,与DBSCAN相比,该算法对输入参数不敏感.此外,OPTICS算法不显示地生成数据聚类,其只是对数据对象集合中的对象进行排序,获取一个有序的对象列表,其中包含了足…
刘 勇   Email:lyssym@sina.com 简介 鉴于基于划分的文本聚类方法只能识别球形的聚类,因此本文对基于密度的文本聚类算法展开研究.DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种典型的基于密度的聚类方法,可以找出形状不规则的聚类,而且聚类时无需事先知道聚类的个数. 基本概念 DBSCAN算法中有两个核心参数:Eps和MinPts(文献与程序中经常使用).前者定义为邻域半径,后者定义为核…
随着互联网的迅猛发展,信息的爆炸式增加,信息超载问题变的越来越严重,信息的更新率也越来越高,用户在信息海洋里查找信息就像大海捞针一样.搜索引擎服务应运而生,在一定程度上满足了用户查找信息的需要.然而互联网的深入发展和搜索引擎日趋庞大,进一步凸现出海量信息和人们获取所需信息能力的矛盾.那么,如何从中获取特定内容的信息和知识成为摆在人们面前的一道难题.面对互联网时代庞杂无序的海量信息,智能高效地处理和深层次综合利用信息离不开文本挖掘技术. 聚类作为一种只是发现的重要方法,是数据挖掘中一项重要的研究课…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 10. 文本聚类 正所谓物以类聚,人以群分.人们在获取数据时需要整理,将相似的数据归档到一起,自动发现大量样本之间的相似性,这种根据相似性归档的任务称为聚类. 10.1 概述 聚类 聚类(cluster analysis )指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似.这些子集又被称为簇(cluster),一般没有交…
K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,聚类的效果也还不错,这里简单介绍一下k-means算法,下图是一个手写体数据集聚类的结果. 基本思想 k-means算法需要事先指定簇的个数k,算法开始随机选择k个记录点作为中心点,然后遍历整个数据集的各条记录,将每条记录归到离它最近的中心点所在的簇中,之后以各个簇的记录的均值中心点取代之前的中心点,然后不断迭代,直到收敛,算法描述如下: 上面说的收敛,可以看出两方面,一是每条记录所归属的簇不再变化,二是优化目标变化不大.算法的…
Part4文本分类 Part3文本聚类提到过.与聚类分类的简单差异. 那么,我们需要理清训练集的分类,有明白分类的文本:測试集,能够就用训练集来替代.预測集,就是未分类的文本.是分类方法最后的应用实现. 1.       数据准备 训练集准备是一个非常繁琐的功能,临时没发现什么省力的办法,依据文本内容去手动整理.这里还是使用的某品牌的官微数据,依据微博内容.我将它微博的主要内容分为了:促销资讯(promotion).产品推介(product).公益信息(publicWelfare).生活鸡汤(l…
声明:由于担心CSDN博客丢失,在博客园简单对其进行备份,以后两个地方都会写文章的~感谢CSDN和博客园提供的平台.        前面讲述了很多关于Python爬取本体Ontology.消息盒InfoBox.虎扑图片等例子,同时讲述了VSM向量空间模型的应用.但是由于InfoBox没有前后文和语义概念,所以效果不是很好,这篇文章主要是爬取百度5A景区摘要信息,再利用Jieba分词工具进行中文分词,最后提出文本聚类算法的一些概念知识.        相关文章:        [Python爬虫]…
文本聚类 文本聚类简单点的来说就是将文本视作一个样本,在其上面进行聚类操作.但是与我们机器学习中常用的聚类操作不同之处在于. 我们的聚类对象不是直接的文本本身,而是文本提取出来的特征.因此如何提取特征因而是非常重要的一步.在HanLP中一共有三个文本聚类方法.前两种都基于词袋模式,第一个是最常见的聚类算法:k-means,但HanLP不光实现了k-means,还实现了速度更快效果更好的repeated bisection算法(重复二分法,还是翻译为累次平方法,好像是第一种).笔者动笔前段时间刚刚…
简介 查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关于Python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关于文本聚类的Kmeans聚类的原理,Java实现,R语言实现,甚至都有一个C++的实现. 正好我写的一些文章,我没能很好的分类,我想能不能通过聚类的方法将一些相似的文章进行聚类,然后我再看每个聚类大概的主题是什么,给每个聚类一个标签,这样也是完成了分类. 中文文本聚类主要有一下几个步骤,下面将分别详细介绍: 切词 去除停用词 构建…
需求 拿到的需求是输入n个文本,对文本进行聚类,由于这些输入不能通过历史数据进行训练,所以这个主要就是用无监督学习来解决. kmeans 谈到聚类就会想到kmeans,它的核心思想是给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数. 分词 会使用一些工具进行分词,比如IKAnalyzer,同时也支持将停词去掉. 词库 刚开…
上两篇文章分别用朴素贝叶斯算法和KNN算法对newgroup文本进行了分类測试.本文使用Kmeans算法对文本进行聚类. 1.文本预处理 文本预处理在前面两本文章中已经介绍,此处(略). 2.文本向量化 package com.datamine.kmeans; import java.io.*; import java.util.*; import java.util.Map.Entry; /** * 计算文档的属性向量,将全部文档向量化 * @author Administrator */ p…
FROM:http://www.cnblogs.com/finallyliuyu/archive/2010/09/03/1817348.html 头文件: #ifndef _Preprocess_H #define _Preprocess_H #include #include #include #include #include #include #include #include #include #include #include #include #include"ictclas30.h…
import sys #doc2vev import gensim import sklearn import numpy as np from gensim.models.doc2vec import Doc2Vec, LabeledSentence TaggededDocument = gensim.models.doc2vec.TaggedDocument def get_datasest(): with open("ttt.txt", 'r') as cf: docs = cf…
建立文本数据数学描写叙述的过程分为三个步骤:文本预处理.建立向量空间模型和优化文本向量. 文本预处理主要採用分词.停用词过滤等技术将原始的文本字符串转化为词条串或者特点的符号串.文本预处理之后,每个文本的词条串被进一步转换为一个文本向量,向量的每一维相应一个词条,其值反映的是这个词条与这个文本之间的类似度.类似度有非常多不同的计算方法.所以优化文本向量就是採用最为合适的计算方法来规范化文本向量,使其能更好地应用于文本分类和文本聚类等方面. TFIDF算法 TF-IDF使得一个单词能尽量与文本在语…
作者 Yongzheng (Tiger) Zhang ,译者 木环 ,本人只是备份一下.. LinkedIn前不久发布两篇文章分享了自主研发的文本分析平台Voices的概览和技术细节.LinkedIn认为倾听用户意见回馈很重要,发现反馈的主要话题.用户的热点话题和痛点,能够做出改善产品.提高用户体验等重要的商业决定.下面是整理后的技术要点. 文本分析平台及主题挖掘 文本数据挖掘是,计算机通过高级数据挖掘和自然语言处理,对非结构化的文字进行机器学习.文本数据挖掘包含但不局限以下几点:主题挖掘.文本…
本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 作为数据分析爱好者,本文作者将想从数据的角度去解读<欢乐颂2>这部热播剧的方方面面,包括舆情传播.网络口碑.人物社交网络分析及,以及小说内容的文本分析. 5月11日,让众多安迪粉期待已久的<欢乐颂>第二季终于播出.相比首季,<欢乐颂2>在造型和场景上显得更为精致时尚,且其中每个角色的造型却都是遵从的其身份和背景,并不突兀. 正所谓…
本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 本文作者将结合自身经验,并以实际案例的形式进行呈现,涉及从数据采集.数据清洗.数据分析再到数据可视化的一整套流程分析,力求条理清晰的展现外部数据分析的强大威力.enjoy~ 在八月份,笔者曾经写过一篇针对外部数据分析的文章,一部分读者看过此文后,向笔者反映,说对外部数据的分析跳出了原有的只针对企业内部数据分析(用户数据.销售数据.流量数据等)的窠臼,在企业…
高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚类的研究中有如下几个研究重点: 1)维度约简,主要分为特征变换和特征选择两大类.前者是对特征空间的变换映射,常见的有PCA.SVD等.后者则是选择特征的子集,常见的搜索方式有自顶向下.随机搜索等:(降维) 2)高维聚类算法,主要分为高维全空间聚类和子空间聚类算法.前者的研究主要聚焦在对传统聚类算法的…
在文本挖掘与文本分类的有关问题中,文本最初始的数据是将文档表示成向量空间模型的一个矩阵,而这个矩阵所拥有的就是不同的词,常采用特征选择方法.原因是文本的特征一般都是单词(term),具有语义信息,使用特征选择找出的k维子集,仍然是单词作为特征,保留了语义信息,而特征提取则找k维新空间,将会丧失了语义信息. 当然,另一方面,在处理文本时,对于我们来说,已经拥有将不同词在低维空间上总结归纳的能力,知道这些词的联系和区别,但是对于计算机来说,它们怎么知道这些的联系呢?也就是它们根本还不拥有这些降维的能…
引言 在信息检索, 文本挖掘和自然语言处理领域, IF-IDF 这个名字, 从它在 20 世纪 70 年代初被发明, 已名震江湖近半个世纪而不曾衰歇. 它表示的简单性, 应用的有效性, 使得它成为不同文本处理任务文本特征权重表示的首选方案. 如果要评选一个 NLP 领域最难以被忘记的公式, 我想, TF-IDF应该是无可争议的第一和唯一. 虽然在以上领域,目前出现了不少以深度学习为基础的新的文本表达和权重(Weighting)表示方法,但是 TF-IDF 作为一个古董方法,依然在很多应用中发挥着…
前段时间用这个分词用的好好的,突然间就总是初始化失败了: 网上搜了很多,但是不是我想要的答案,最终去了官网看了下:官网链接 发现哇,版本更新了啊,下载页面链接 麻利的下载好了最新的文档,一看压缩包名字:20161115173728_ICTCLAS2016分词系统下载包 现在是2016-11-17 11:49:08估计是刚更新的, 果然,将原来的Data文件夹删除之后,再将最新的Data文件夹放到原来的目录下就Ok了, 貌似初始化失败还有权限的问题什么的,,,遇上再总结,,, 初始化的时候还可能遇…
机器学习算法的空间.时间复杂度依赖于输入数据的规模,维度规约(Dimensionality reduction)则是一种被用于降低输入数据维数的方法.维度规约可以分为两类: 特征选择(feature selection),从原始的d维空间中,选择为我们提供信息最多的k个维(这k个维属于原始空间的子集) 特征提取(feature extraction),将原始的d维空间映射到k维空间中(新的k维空间不输入原始空间的子集) 在文本挖掘与文本分类的有关问题中,常采用特征选择方法.原因是文本的特征一般都…
转自:http://www.datalab.sinaapp.com/?p=237 最近看了LDA以及文本聚类的一些方法,写在这里算是读书笔记.文章最后进行了一个小实验,通过爬取本人在微博上关注的人的微博,利用微博的内容,尝试将我关注的人按主题进行进行聚类. 文本聚类就是把一个文本集分成一定数量的簇(Cluster),使每个簇内的文本之间具有较大的相似性,而使簇间的文本具有较大的差异性.传统的文 本聚类方法一般基于向量空间模型(vector space model): 在对文本集中的每个文本进行预…
在文本聚类之前,首先要做的是文本的向量化.该过程涉及到分词,特征抽取,权重计算等等.Mahout 提供了文本向量化工具.由于Mahout 向量化算法要处理的文件是Hadoop SequenceFile ,需要将普通的文本文件转成SequenceFile格式,然后在向量化. 一.序列化 API SequenceFilesFromDirectory.main(args); --input (-i) 文件存放路径 -output (-o) 输出文件路径 --overwrite (-ow) 是否清空输出…
1. 聚类简介 0x1:聚类是什么? 聚类是一种运用广泛的探索性数据分析技术,人们对数据产生的第一直觉往往是通过对数据进行有意义的分组.很自然,首先要弄清楚聚类是什么? 直观上讲,聚类是将对象进行分组的一项任务,使相似的对象归为一类,不相似的对象归为不同类 但是,要达到这个目的存在几个很困难的问题 . 上述提及的两个目标在很多情况下是互相冲突的.从数学上讲,虽然聚类共享具有等价关系甚至传递关系,但是相似性(或距离)不具有传递关系.具体而言,假定有一对象序列,X1,....,Xm,所有相邻元素(X…
来源:, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto' ) 1 2 3 4 5 6 7 8 9 10 11 12 参数的意义: n_clusters:簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中…
LDA模型算法简介: 算法 的输入是一个文档的集合D={d1, d2, d3, ... , dn},同时还需要聚类的类别数量m:然后会算法会将每一篇文档 di 在 所有Topic上的一个概率值p:这样每篇文档都会得到一个概率的集合di=(dp1,dp2,..., dpm):同样的文档中的所有词也会求出 它对应每个Topic的概率,wi = (wp1,wp2,wp3,...,wpm):这样就得到了两个矩阵,一个文档到Topic,一个词到Topic. 这样LDA算法,就将文档和词,投射到了一组Top…
关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.html  基于朴素贝叶斯分类器的文本聚类算法 (下) http://www.cnblogs.com/phinecos/archive/2008/10/21/1316044.html 算法杂货铺——分类算法之朴素贝叶斯分类 http://www.cnblogs.com/leoo2sk/archive/…