TensorFlow用法】的更多相关文章

TensorFlow用法 什么是TensorFlow TensorFlow是一个开源软件库,用于使用数据流图进行数值计算.图中的节点表示数学运算,而图的边缘表示流动的多维数据数组(张量).这种灵活的体系结构可以将计算部署到台式机,服务器或移动设备中的一个或多个CPU或GPU上,而无需重写代码. TensorFlow最初由Google机器智能研究组织内Google Brain团队的研究人员和工程师开发,目的是进行机器学习和深度神经网络研究.该系统足够通用,也可以应用于其他各种领域. 运行Tenso…
使用 embedding 变量 import tensorflow as tf import numpy as np sess = tf.InteractiveSession() M = list('ABCD') table = tf.contrib.lookup.index_table_from_tensor( mapping=tf.constant(M), num_oov_buckets=1, default_value=-1) # 包含多个ID IDs = tf.Variable(["A|…
本节主要用一个例子来讲述一下基本的tensorflow用法. 在这个例子中,我们首先伪造一些线性数据点,其实这些数据中本身就隐藏了一些规律,但我们假装不知道是什么规律,然后想通过神经网络来揭示这个规律. 伪造数据 import numpy as np # 创建100个随机数 x_data = np.random.rand(100).astype(np.float32) # 创建最终要模拟的线性公式 y_data = x_data * 0.1 + 0.3 创建模型 在伪造数据之后,我们当作不知道这…
TensorFlow tf.app&tf.app.flags用法介绍 TensorFlow tf.app argparse  tf.app.flags 下面介绍 tf.app.flags.FLAGS的使用,主要是在用命令行执行程序时,需要传些参数,其实也就可以理解成对argparse库进行的封装,示例代码如下 #coding:utf-8  # 学习使用 tf.app.flags 使用,全局变量  # 可以再命令行中运行也是比较方便,如果只写 python app_flags.py 则代码运行时默…
一下均在ubuntu环境下: (1)方法一,使用help()函数: 比如对于tf.placeholder(),在命令行中输入import tensorflow as tf , help(tf.placeholder)即可查看用法,再按"q"即可退出…
网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下: 1.原理 公式如下: y=γ(x-μ)/σ+β 其中x是输入,y是输出,μ是均值,σ是方差,γ和β是缩放(scale).偏移(offset)系数. 一般来讲,这些参数都是基于channel来做的,比如输入x是一个16*32*32*128(NWHC格式)的feature map,那么上述参数都是128维的向量.其中γ和β是可有可无的,有的话,就是一个可以学习的参数(参与前向后向),没…
一 TensorFlow安装 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tsnsor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端的计算过程.TensorFlow是将复杂的数据结构传输至人工神经网络中进行分析和处理过程的系统. 下载和安装:https://blog.csdn.net/darlingwood2013/article/details/6032225…
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 除去name参数用以指定该操作的name,与方法有关的一共两个参数: 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[b…
tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session()  用法的区别: tf.Session() 构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数, 会话构造器将启动默认图. import tensorflow as tf matrix1 = tf.constant([[3., 3.]]) matrix2 = tf.constant([[2.],…
tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素.tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量对应的索引,其他的参数不介绍. 例如: import tensorflow as tf; import numpy as np; c = np.random.random([10,1]) b = tf.nn.embedding_lookup(c, [1, 3]) with tf.Session()…
在分析Attention-over-attention源码过程中,对于tensorflow.nn.bidirectional_dynamic_rnn()函数的总结: 首先来看一下,函数: def bidirectional_dynamic_rnn( cell_fw, # 前向RNN cell_bw, # 后向RNN inputs, # 输入 sequence_length=None,# 输入序列的实际长度(可选,默认为输入序列的最大长度) initial_state_fw=None, # 前向的…
Tensorflow中reduction_indices 的用法 默认时None 压缩成一维…
本文转载自:https://www.cnblogs.com/lyc-seu/p/8647792.html Tensorflow Summary用法 tensorboard 作为一款可视化神器,是学习tensorflow时模型训练以及参数可视化的法宝.而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示. tf.summary有诸多函数: 1.tf.summary.scalar 用来显示标量信息,其格式为: tf.summary…
tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝. 而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布图并在tensorboard显示. tf.summary有诸多函数: 1.tf.summary.scalar 用来显示标量信息,其格式为: tf.summary.scalar(tags, values, collections=None, name=None) 例如:tf.summary.scala…
作 者:marsggbo 出 处:https://www.cnblogs.com/marsggbo版权声明:署名 - 非商业性使用 - 禁止演绎,协议普通文本 | 协议法律文本. --------------------------------------------------------------------------------------------------------------- Tensorflow       tf.app  &  tf.app.flags    用法介绍…
TensorFlow Keras API用法 Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,可以编译和拟合模型,可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层: 在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选…
TensorFlow优化器及用法 函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本文将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该…
tf.gradients 官方定义: tf.gradients( ys, xs, grad_ys=None, name='gradients', stop_gradients=None, ) Constructs symbolic derivatives of sum of ys w.r.t. x in xs. ys and xs are each a Tensor or a list of tensors. grad_ys is a list of Tensor, holding the gr…
摘抄自:https://blog.csdn.net/u011500062/article/details/51728830/ 1.实例 import tensorflow as tf import numpy as np x = tf.placeholder(tf.float32, shape=[None, 1]) y = 4 * x + 4 w = tf.Variable(tf.random_normal([1], -1, 1)) b = tf.Variable(tf.zeros([1]))…
在看C3D代码的时候,看见有一段代码是 config = tf.ConfigProto()#主要是配置tf.Session的运行方式,GPU还是CPU,在这里选择的是GPU的运行方式 config.gpu_options.allow_growth = True tf.ConfigProto()的主要用法就是配置tf.Session的运行方式,后一句指定的其为GPU的运行方式…
TensorFlow是一个采用数据流图,用于数值计算的开源软件库.自己接触tensorflow比较的早,可是并没有系统深入的学习过,现在TF在深度学习已经成了"标配",所以打算系统的学习一遍.在本篇文章中主要介绍TF的基础知识... 创建并运行图 首先创建 两个变量 import tensorflow as tf reset_graph() x = tf.Variable(3, name="x") y = tf.Variable(4, name="y&qu…
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 除去name参数用以指定该操作的name,与方法有关的一共两个参数: 第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[bat…
Feed 上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor. feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操…
训练代码: # coding: utf-8 from __future__ import print_function from __future__ import division import tensorflow as tf import numpy as np import argparse def dense_to_one_hot(input_data, class_num): data_num = input_data.shape[0] index_offset = np.arang…
训练代码: # coding: utf-8 from __future__ import print_function from __future__ import division import tensorflow as tf import numpy as np import argparse def dense_to_one_hot(input_data, class_num): data_num = input_data.shape[0] index_offset = np.arang…
综述   TensorFlow程序分为构建阶段和执行阶段.通过构建一个图.执行这个图来得到结果. 构建图   创建源op,源op不需要任何输入,例如常量constant,源op的输出被传递给其他op做运算. import tensorflow as tf # 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点 matrix1 = tf.constant([[3., 3.]]) # 创建另外一个常量 op, 产生一个 2x1 矩阵. matrix2 = tf.constan…
http://c.biancheng.net/view/1911.html 每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出值限定在一个定义的范围内. 如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:   这里,g 表示激…
原文地址: https://blog.csdn.net/c20081052/article/details/82345454 --------------------------------------------------------------------------------------------------- 在服务器上用多GPU做训练时,由于想只用其中的一个GPU设备做训练,可使用深度学习代码运行时往往出现多个GPU显存被占满清理.出现该现象主要是tensorflow训练时默认占…
import tensorflow as tf import numpy as np def _parse_function(x): num_list = np.arange(10) return num_list def _from_tensor_slice(x): return tf.data.Dataset.from_tensor_slices(x) softmax_data = tf.data.Dataset.range(1000) # 构造一个队列 softmax_data = sof…
简介 Tensorflow是一个深度学习框架,它使用图(graph)来表示计算任务,使用tensor(张量)表示数据,图中的节点称为OP,在一个会话(Session)的上下文中执行运算,最终产生tensor. 之所以用计算图来表示计算任务,Tensorflow的官网的一张图片就能很好的说明. tensor在数学中称为张量,表示空间,在计算图模型中就是基本的数据类型,如同我们在sklearn等机器学习框架中使用numpy的矩阵作为基本运算的数据类型一样,无论几维的矩阵都是一个张量 神经网络的前向传…