首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「CF 1370F2」The Hidden Pair (Hard Version)
】的更多相关文章
Solution -「CF 1370F2」The Hidden Pair (Hard Version)
\(\mathcal{Description}\) Link (hard) & Link (easy). 这是一道交互题. 给定一棵 \(n\) 个结点的树,其中有两个是特殊结点.每次你可以提出形如 \(x~c_1~c_2~\cdots~c_x\) 的询问,交互器会回答在点集 \(\{c_x\}\) 中,到两个特殊结点距离之和最小的结点 \(p\) 和这个最小距离和 \(d\)(若有多个 \(d\),回答任意一个).你需要猜出两个特殊结点的编号. \(n\le10^3\),\(T…
Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击. 的摆放方案数,对 \(998244353\) 取模. \(n\le2\times10^5\). \(\mathcal{Solution}\) 这道<蓝题>嗷,看来兔是个傻子. 从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varphi:V_1\rightarrow V_2\),使得 \(\forall (u,v)\in V_1^2,~(u,v)\notin E_1\lor (\varphi(u),\varphi(v))\notin E_2\),或声明无解. \(n\le10^4\). \(\mathscr{Solution…
Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权,最大化其边权和,并保证 \(m_2\) 条边都在最小生成树中. \(n,m_1,m_2\le5\times10^5\). \(\mathcal{Solution}\) 先保证在 \(\text{MST}\) 中的限制--指定所有边权为 \(0\).并求出此时的 \(\text{MST}\)…
Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\) 关系,求合法树的个数. \(0\le m<n\le13\),\(q\le100\). \(\mathcal{Solution}\) 巧妙的状压 owo.不考虑限制,自然地有状态 \(f(u,S)\) 表示用 \(S\) 中的结点构成以 \(u\) 为根的树的方案数.转移相当于划分出一棵子…
Solution -「CF 757F」Team Rocket Rises Again
\(\mathcal{Description}\) link. 给定 \(n\) 个点 \(m\) 条边的无向图和一个源点 \(s\).要求删除一个不同与 \(s\) 的结点 \(u\),使得有最多的点到 \(s\) 的最短距离改变.求出此时最短距离改变的结点的数量. \(n\le2\times10^5,m\le3\times10^5\). \(\mathcal{Solution}\) 首先,以 \(s\) 为源点跑一个单源最短路.设 \(s\) 到 \(u\) 的距离为 \(d…
Solution -「CF 802C」Heidi and Library (hard)
\(\mathcal{Descriptoin}\) Link. 你有一个容量为 \(k\) 的空书架,现在共有 \(n\) 个请求,每个请求给定一本书 \(a_i\).如果你的书架里没有这本书,你就必须以 \(c_{a_i}\) 的价格购买这本书放入书架.当然,你可以在任何时候丢掉书架里的某本书.请求出完成这 \(n\) 个请求所需要的最少价钱. \(n,k\le80\). \(\mathcal{Solution}\) 网络瘤嘛-- 费用流,考虑先全部买入,再抵消花费.具体地…
Solution -「CF 793G」Oleg and Chess
\(\mathcal{Description}\) Link. 给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车. \(n,q\le10^4\). \(\mathcal{Solution}\) 如果把问题转化成"只允许在某些子矩阵上放棋",就是一个很显然的线段树优化建图最大流.源点连向行上的线段树叶子,流量为 \(1\):行上的线段树结点向父亲连边,流量为正无穷:对于每个矩阵,行在树上分裂的 $\…
Solution -「CF 1119F」Niyaz and Small Degrees
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个结点的树,边有边权,对于每个整数 \(x\in[0,n)\),求出最少的删边代价使得任意结点度数不超过 \(x\). \(n\le2.5\times10^5\). \(\mathcal{Solution}\) 从单个询问入手,设此时 \(x\) 为常数,就有一个简单的树上 DP.令 \(f(u,0/1)\) 表示 \(u\) 点与父亲的边不断 / 断时,\(u\) 子树内的最小代价.以 \(f…
Solution -「CF 1480G」Clusterization Counting
\(\mathcal{Description}\) Link. 给定一个 \(n\) 阶完全图,边权为 \(1\sim\frac{n(n-1)}2\) 的排列.称一种将点集划分为 \(k\) 组的方案合法,当且仅当对于每个组,与其他组相连的边均大于组内的边.对于 \(k\in[1,n]\),求合法的划分方案数,对 \(998244353\) 取模. \(n\le1500\). \(\mathcal{Solution}\) 按边权从小到大加入边,发现原图中某个团可以成为一组,当且仅…