kd树的构建以及搜索】的更多相关文章

构建算法 k-d树是一个二叉树,每个节点表示一个空间范围.表1给出的是k-d树每个节点中主要包含的数据结构. 表1 k-d树中每个节点的数据类型 域名 数据类型 描述 Node-data 数据矢量 数据集中某个数据点,是n维矢量(这里也就是k维) Range 空间矢量 该节点所代表的空间范围 split 整数 垂直于分割超平面的方向轴序号 Left k-d树 由位于该节点分割超平面左子空间内所有数据点所构成的k-d树 Right k-d树 由位于该节点分割超平面右子空间内所有数据点所构成的k-d…
学习了两篇博客,存下来以免丢失. http://blog.csdn.net/losteng/article/details/50893739 https://leileiluoluo.com/posts/kdtree-algorithm-and-implementation.html…
  之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻,而不仅仅是最近邻,下面的代码将利用kd树搜索目标点的k个近邻. 首先还是创建一个类,用于保存结点的值,左右子树,以及用于划分左右子树的切分轴 class decisionnode: def __init__(self,value=None,col=None,rb=None,lb=None): sel…
李航老师书上的的算法说明没怎么看懂,看了网上的博客,悟出一套循环(建立好KD树以后的最近邻搜索),我想应该是这样的(例子是李航<统计学习算法>第三章56页:例3.3): 步骤 结点查询标记 栈内元素(本次循环结束后) 最近点 最近距离 说明 A B C D E F G 初始化 ABD M=空 Mdis = ∞ 初始化:先将S所在的区域找到,将经过的各个结点依次加入栈中,将查询标记初始化为0 循环 AB M=D Mdis = dis(S,D) 取出栈顶元素D,D被查询,更新D的标记为1,计算S与…
基于kd树的knn的实现原理可以参考文末的链接,都是一些好文章. 这里参考了别人的代码.用c语言写的包括kd树的构建与查找k近邻的程序. code: #include<stdio.h> #include<stdlib.h> #include<math.h> #include<time.h> typedef struct{//数据维度 double x; double y; }data_struct; typedef struct kd_node{ data_…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
k-d树 在计算机科学里,k-d树( k-维树的缩写)是在k维欧几里德空间组织点的数据结构.k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索).k-d树是空间二分树(Binary space partitioning )的一种特殊情况.[1] 可以看到,KD树是基于欧式距离度量的. 简介: k-d树是每个节点都为k维点的二叉树.所有非叶子节点可以视作用一个超平面把空间分区成两个半空间( Half-space[失效链接] ).节点左边的子树代表在超平面左边的点,节点右边的子…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
目录 网格 (Grid) 网格的应用 四叉树/八叉树 (Quadtree/Octree) 四叉树/八叉树的应用 BSP树 (Binary Space Partitioning Tree) 判断点在平面前后算法 BSP树的应用 参考 k-d树 (k-dimensional tree) k-d树的构建 k-d树的应用 参考 层次包围盒树 (Bounding Volume Hierarchy Based On Tree) 层次包围盒树的应用 参考 自定义区域 判断点是否在凸多边形区域算法 自定义区域划…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居. 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居),这K个实例的多数属于某个类,就把该输入实例分类到这个类中. 如上图所示,有两类不同的样本数据,分别用蓝色的…
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD树+BBF算法+RANSAC算法 2.书:王永明 王贵锦 <图像局部不变性特征与描述> RobHess的SIFT源码中的几个文件说明? RobHess的SIFT源码分析: (1) minpq.h和minpq.c文件这两个文件中实现了最小优先级队列(Minimizing Priority Queue…
很久之前我就想过怎么快速在二维平面上查找一个区域的信息,思考许久无果,只能想到几种优秀一点的暴力. Kd树就是干上面那件事的. 别的不多说,赶紧把自己的理解写下来,免得凉了. KD树的组成 以维护k维空间(x,y,……)内的KD树为例,主要由一下三部分组成: p[k],代表树上这个结点所储存的点(在题目中给出的/你自己加上的点集中的一个点). ch[2],表示它的子结点(没错,KD树是一棵二叉树) mi[k]与mx[k],mi/mx[i]代表KD树这个结点统辖的所有点的第i-1范围.比如说mi[…
Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据.在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle). 在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree)的相关概念和算法.k=1就是BST! 例如,图1中是一棵二叉查找树,其满足BST的性质. 图1 二叉查找树(来源:Wiki) KD树的构…
目录 kd树 一.kd树学习目标 二.kd树引入 三.kd树详解 3.1 构造kd树 3.1.1 示例 3.2 kd树搜索 3.2.1 示例 四.kd树流程 4.1 输入 4.2 输出 4.3 流程 五.kd树优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ kd树 k近邻算法中讲到它有一个较为致命的缺点就是每个实例到未来新…
kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索.构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分,依次选择坐标轴对空间进行切分,选择训练实例点在选定坐标轴上的中位数为切分点.具体kd树的原理可以参考kd树的原理. 代码是参考<统计学习方法>k近邻 kd树的python实现得到 首先创建一个类,用于表示树的节点,包括:该节点的值,用于划分左右子树的切分轴,左子树,右子树 class decisionnode: de…
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键! k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,非常耗时,这种方法不可行,为了提高k近邻的搜索效率,常常考虑使用特殊的存储结构存储训练数据,以减少计算距离的次数,具体方法很多,这里介绍实现经典的kd树方法. 2.构造kd树 kd…
本文首先介绍Kd-Tree的构造方法,然后介绍Kd-Tree的搜索流程及代码实现,最后给出本人利用C#语言实现的二维KD树代码.这也是我自己动手实现的第一个树形的数据结构.理解上难免会有偏差,敬请各位多多斧正. 1. KD树介绍 Kd-Tree(KD树),即K-dimensional tree,是一种高维索引树形数据结构,常用于在大规模的高维数据空间进行最邻近查找和近似最邻近查找.我实现的KD树是二维的Kd - tree.目的是在点集中寻找最近点.参考资料是Kd-Tree的百度百科.并且根据百度…
问题 给定一系列的点.和一个矩形.求矩形中包括的点的数量. 解答 这个问题能够通过建立矩阵来进行求解.首先将一个空间切割成矩阵,将点放置在相应的格子中.再计算矩形覆盖的格子.再推断格子中的点是否包括在矩形中 这样的方法的问题是,可能这些点全都集中在一个格子中. 这样的情况下算法的效率比較低. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvY2FpcGVpY2hhbzI=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCM…
  kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索.构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分.    假设数据集\(T\)的大小是\(m*n\),即\(T={x_1,x_2,...x_m}\),其中\(x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T,i=1,2,...m\).构建Kd树的过程大致如下.   对所有的数据,以\(x^{(1)}\)为轴,即取\(x_i^{(1…
常用来作空间划分及近邻搜索,是二叉空间划分树的一个特例.通常,对于维度为k,数据点数为N的数据集,kd树适用于N≫2的k次方的情形. 1维数据的查询 假设在数据库的表格T中存储了学生的语文成绩chinese.数学成绩math.英语成绩english,如果要查询语文成绩介于30-93分的学生,如何处理?假设学生数量为N,如果顺序查询,则其时间复杂度为O(N),当学生规模很大时,其效率显然很低,如果使用平衡二叉树,则其时间复杂度为O(logN),能极大地提高查询效率.平衡二叉树示意图为: 对于1维数…
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ kd树(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.font_manager import FontP…
K-D树最近邻算法https://blog.csdn.net/image_fzx/article/details/80624968 一般说来,索引结构中相似性查询有两种基本的方式: 一种是范围查询,范围查询时给定查询点和查询距离阈值,从数据集中查找所有与查询点距离小于阈值的数据 另一种是K近邻查询,就是给定查询点及正整数K,从数据集中找到距离查询点最近的K个数据,当K=1时,它就是最近邻查询. Kd-树是K-dimension tree的缩写,是对数据点在k维空间(如二维(x,y),三维(x,y…
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5992 Problem Description There are N hotels all over the world. Each hotel has a location and a price. M guests want to find a hotel with an acceptable price and a minimum distance from their locations.…
Kd树按空间划分生成叶子节点,各个叶子节点里存放点数据,其可以按半径搜索或邻区搜索.PCL中的Kd tree的基础数据结构使用了FLANN以便可以快速的进行邻区搜索.FLANN is a library for performing fast approximate nearest neighbor searches in high dimensional spaces.下面是一个最基本的例子,只寻找一个最近点: #include <pcl/point_cloud.h> #include &l…
# coding:utf-8 import numpy as np import matplotlib.pyplot as plt T = [[2, 3], [5, 4], [9, 6], [4, 7], [8, 1], [7, 2]] S=[7, 3] class node: def __init__(self, point): self.left = None self.right = None self.point = point self.parent = None pass def s…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5809 [题目大意] 给出一些蚂蚁和他们的巢穴,一开始他们会在自己的巢穴(以二维坐标形式给出),之后每一个时刻会向距离自己最近的巢穴移动,当两只蚂蚁相向而行的时候,我们可以认为他们相遇了,现在有q个询问,每个询问需要让你判断蚂蚁x和y是否会相遇. [题解] 我们可以发现对于一只蚂蚁来说,他最后肯定会陷入一个二元环中来回走动,那么我们只要判断是否最后两只蚂蚁会出现在同一个二元环中,那么就可以判断他们…
K近邻法 1基本概念 K近邻法,是一种基本分类和回归规则.根据已有的训练数据集(含有标签),对于新的实例,根据其最近的k个近邻的类别,通过多数表决的方式进行预测. 2模型相关 2.1 距离的度量方式 定义距离 (1)欧式距离:p=2. (2)曼哈顿距离:p=1. (3)各坐标的最大值:p=∞. 2.2 K值的选择 通常使用交叉验证法来选取最优的k值. k值大小的影响: k越小,只有距该点较近的实例才会起作用,学习的近似误差会较小.但此时又会对这些近邻的实例很敏感,如果紧邻点存在噪声,预测就会出错…