<机器学习实战>的最后的两个算法对我来说有点陌生,但学过后感觉蛮好玩,了解了一般的商品数据关联分析和搜索引擎智能提示的工作原理.先来看看关联分析(association analysis)吧,它又称关联规则学习(association rule learning),它的主要工作就是快速找到经常在一起的频繁项,比如著名的“啤酒”和“尿布”.试想一下,给我们一堆交易数据,每次的交易数据中有不同的商品,要我们从中发掘哪些商品经常被一起购买?当然穷举法也可以解决,但是计算量很大,这节的算法Aprior…