题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不同的染色方案数为: λ(g)表示置换g的轮换个数,且λ(g) = λ1(g) + λn(g) + -- + λn(g),其中λi(g)表示g中长度为i的轮换(循环)个数. 本题是对一个n个珠子的圆珠的颜色,而圆珠的置换群有: Ⅰ翻转:1.当n为奇数时,有n种翻转,每种翻转的轴都是一个顶点和该顶点对边…