http://52opencourse.com/111/斯坦福大学自然语言处理第四课-语言模型(language-modeling) 一.课程介绍 斯坦福大学于2012年3月在Coursera启动了在线自然语言处理课程,由NLP领域大牛Dan Jurafsky 和 Chirs Manning教授授课:https://class.coursera.org/nlp/ 以下是本课程的学习笔记,以课程PPT/PDF为主,其他参考资料为辅,融入个人拓展.注解,抛砖引玉,欢迎大家在“我爱公开课”上一起探讨学…
1. n-grams 统计语言模型研究的是一个单词序列出现的概率分布(probability distribution).例如对于英语,全体英文单词构成整个状态空间(state space). 边缘概率分布 p(Xt=k) 称为 unigram: 使用一阶马尔科夫模型(Markov model),则 p(Xt=k|Xt−1=j) 又称为 bigram: 类似地,基于二阶马尔科夫模型,p(Xt=k|Xt−1=j),Xt−2=i 称为 trigram: 下图为达尔文著名的<物种起源>英文版字母 {…
前一篇文章  用 CNTK 搞深度学习 (一) 入门    介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火的一个模型: 用递归神经网络构建一个语言模型. 递归神经网络 (RNN),用图形化的表示则是隐层连接到自己的神经网络(当然只是RNN中的一种): 不同于普通的神经网络,RNN假设样例之间并不是独立的.例如要预测“上”这个字的下一个字是什么,那么在“上”之前出现过的字就很重要,如果之前出现过“工作”,…
N-gram统计语言模型 1.统计语言模型 自然语言从它产生開始,逐渐演变成一种上下文相关的信息表达和传递的方式.因此让计算机处理自然语言.一个主要的问题就是为自然语言这样的上下文相关特性建立数学模型. 这个数学模型就是自然语言处理中常说的统计语言模型,它是今天全部自然语言处理的基础,而且广泛应用与机器翻译.语音识别.印刷体和手写体识别.拼写纠错.汉字输入和文献查询. 2.N-Gram N-Gram是大词汇连续语音识别中经常使用的一种语言模型.对中文而言,我们称之为汉语语言模型(CLM, Chi…
一.发展 起源:统计语言模型起源于 Ponte 和 Croft 在 1998年的 SIGIR上发表的论文 应用:语言模型的应用很多: corsslingual retrieval distributed IR expert finding passage retrieval web search genomics retrieval 基因组学检索 topic tracking subtopic retrieval 二.basic model 1.Ponte and Croft 核心思想:quer…
概念 统计语言模型:是描述自然语言内在的规律的数学模型.广泛应用于各种自然语言处理问题,如语音识别.机器翻译.分词.词性标注,等等.简单地说,语言模型就是用来计算一个句子的概率的模型 即P(W1,W2,W3....WK).利用语言模型,可以确定哪个词序列的可能性更大,或者给定若干个词,可以预测下一个最可能出现的词语. N_gram语言模型 简述 NLP中,人们基于一定的语料库,可以利用Ngram来预计或者评估一个句子是否合理.另外一方面,Ngram可以用来评估两个字符串之间的差异程度,这是模糊匹…
Basic idea 1.一个文档(document)只有一个主题(topic) 2.主题指的是这个主题下文档中词语是如何出现的 3.在某一主题下文档中经常出现的词语,这个词语在这个主题中也是经常出现的. 4.在某一主题下文档中不经常出现的词语,这个词语在这个主题中也是不经常出现的. 5.由此,概率计算方法可以近似为: Ranking 当给定查询q时,怎么根据统计语言模型进行排序呢?有三种排序方法,分别是:1.Query-likelihood 2.Document-likelihood 3.Di…
Recurrent Neural Network Language Modeling Toolkit  工具使用点击打开链接 本博客地址:http://blog.csdn.net/wangxinginnlp/article/details/38385471 依照训练的进度学习代码: RNN训练过程(摘自Mikolov的博士论文): 1. Set time counter t = 0, initialize state of the neurons in the hidden layer s(t)…
RNNs and Language modeling in TensorFlow From feed-forward to Recurrent Neural Networks (RNNs) In the last few weeks, we've seen how feed-forward and convolutional neural networks have achieved incredible results. They perform on par with, even outpe…
转:http://blog.csdn.net/lanxu_yy/article/details/29918015 为什么需要语言模型? 想象“语音识别”这样的场景,机器通过一定的算法将语音转换为文字,显然这个过程是及其容易出错的.例如,用户发音“Recognize Speech”,机器可能会正确地识别文字为“Recognize speech”,但是也可以不小心错误地识别为“Wrench a nice beach".简单地从词法上进行分析,我们无法得到正确的识别,但是计算机也不懂语法,那么我们应该…
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子  ,其中  代表句子中的第  个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 ,  $p(w_n|w_1^{n-1}) = p(w_n|w_1,w_2,...,w_{n-1})$  ,  $ p(w_n|w_1^{n-1})$ 即为 Language Model 的参数,.通常参数的求解用方法是 N-gram 模型,最大熵模型,HMM,CRF…
定义 什么是语言模型,通俗的讲就是从语法上判断一句话是否通顺.即判断如下的概率成立: \[p(\text{今天是周末})>p(\text{周末是今天}) \] 链式法则(chain rule) \[p(w_1,w_2,...,w_n)=p(w_1)p(w_2|w_1)p(w_3|w_1,w_2)...p(w_n|w_1,w_2,...,w_{n-1}) \] Markov assumption Markov assumption(first order) \[p(w_1,w_2,...,w_n)…
chain rule markov assumption 评估语言模型 平滑方法…
Volume:Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004 Authors:Kevyn Collins-Thompson | James P Callan .Year:2004 Venues:NAACL | HLT 数据不公开:550英文doc…
Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, dinosaurs existed, and in this assignment they are back. You are in charge of a special task. Leading biology researchers are creating new breeds of…
语言模型 所谓的语言模型,即是指在得知前面的若干个单词的时候,下一个位置上出现的某个单词的概率. 最朴素的方法是N-gram语言模型,即当前位置只和前面N个位置的单词相关.如此,问题便是,N小了,语言模型的表达能力不够.N大了,遇到稀疏性问题,无法有效的表征上下文. LSTM模型一般会将单词embedding到连续空间,然后输入进LSTM,从而有效的表征上下文.但LSTM的问题在于,作为递归模型,当前状态依赖于上一状态,并行化受到限制. 门限卷积   所谓的门限卷积,其核心在于为卷积的激活值添加…
Review: Conditional LMs Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it performs well. And we use the Decoder network(also a RNN), and use the ‘beam search’ algorithm to generate the target statement word by word. The above n…
版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/liuchonge/article/details/70238350 最近忙着实验室的项目,一直没有时间做仿真,所以就先写一下之前看的一篇文章,总结一下吧.这次要说的是Gated CNN,这也是第一次将门限控制引入到CNN中的文章,感觉十分有新意,效果也很棒.下面我们来看一下,文章的主要贡献包括: 提出一种新的门控机制 缓解梯度传播,降低梯度…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
SRILM是一个建立和使用统计语言模型的开源工具包,从1995年开始由SRI 口语技术与研究实验室(SRI Speech Technology and Research Laboratory)开发,现在仍然不断推出新版本,被广泛应用于语音识别.机器翻译等领域.这个工具包包含一组C++类库.一组进行语言模型训练和应用的可执行程序等.利用它可以非常方便地训练和应用语言模型.给定一组连续的词,调用SRILM提供的接口,可以得到这组词出现的概率. http://www.jianshu.com/p/5b1…
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embedding到BERT - 二十三岁的有德 目录 一.预训练 1.1 图像领域的预训练 1.2 预训练的思想 二.语言模型 2.1 统计语言模型 神经网络语言模型 三.词向量 3.1 独热(Onehot)编码 3.2 Word Embedding 四.Word2Vec 模型 五.自然语言处理的预训练模型 六…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1词汇表征 Word representation 原先都是使用词汇表来表示词汇,并且使用1-hot编码的方式来表示词汇表中的词汇. 这种表示方法最大的缺点是 它把每个词孤立起来,这样使得算法对相关词的泛化能力不强 例如:对于已知句子"I want a glass of orange ___ " 很可能猜出下一个词是"juice". 如果模型已知读过了这个句子但是当看见句子"I…
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算不同 词语的向量(word vector) CBoW是给定上下文来预测输入词.Skip-gram给定输入词预测上下文,但最终都会得到词向量矩阵W 上图为词向量的部分可视化结构 Statistical Language Model (统计语言模型)  在深入word2vec之前,首先回顾下nlp中的一…
 Coreseek 是一款中文全文检索/搜索软件,以GPLv2许可协议开源发布,基于Sphinx研发并独立发布,专攻中文搜索和信息处理领域,适用于行业/垂直搜索.论坛/站内搜索.数据库搜索.文档/文献检索.信息检索.数据挖掘等应用场景,用户可以免费下载使用:同时针对有实际需要的客户,还提供专业的搜索技术与本地化的Sphinx技术支持服务.   1. 中文分词算法-MMSeg算法原理 要理解mmseg算法,首先来理解一下chunk,它是MMSeg分词算法中一个关键的概念.Chunk中包含依据上下文…
这一篇文章其实是参考了很多篇文章之后写出的一篇对于语言模型的一篇科普文,目的是希望大家可以对于语言模型有着更好地理解,从而在接下来的NLP学习中可以更顺利的学习. 1:传统的语音识别方法: 这里我们讲解一下是如何将声音变成文字,如果有兴趣的同学,我们可以深入的研究. 首先我们知道声音其实是一种波,常见的MP3等都是压缩的格式,必须要转化成非压缩的纯波形的文件来处理,下面以WAV的波形文件来示例: 在进行语音识别之前,有的需要把首尾段的静音进行切除,进行强制对齐,以此来降低对于后续步骤的干扰,整个…
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NLP词的表示方法类型 1.词的独热表示one-hot representation 2.词的分布式表示distributed representation 三.NLP语言模型 四.词的分布式表示 1. 基于矩阵的分布表示 2. 基于聚类的分布表示 3. 基于神经网络的分布表示,词嵌入( word em…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
参考: https://mp.weixin.qq.com/s/NvwB9H71JUivFyL_Or_ENA http://yangminz.coding.me/blog/post/MinkolovRNNLM/MinkolovRNNLM_thesis.html 语言模型本质上是在回答一个问题:出现的语句是否合理. 在历史的发展中,语言模型经历了专家语法规则模型(至80年代),统计语言模型(至00年),神经网络语言模型(到目前). 专家语法规则模型 在计算机初始阶段,随着计算机编程语言的发展,归纳出…
本篇带来XL-Net和它的基础结构Transformer-XL.在讲解XL-Net之前需要先了解Transformer-XL,Transformer-XL不属于预训练模型范畴,而是Transformer的扩展版,旨在解决Transformer的捕获长距离依赖信息的上限问题.接下来我们详细的介绍Transformer-XL和XL-Net. 一,Transformer-XL 论文:TRANSFORMER-XL: LANGUAGE MODELING WITH LONGER-TERM DEPENDENC…