BZOJ 1989 概率相关】的更多相关文章

思路: 一条边免费的概率为 (经过它的路/总路径条数)^2 DFS即可 有个地方没有用 long long炸了好久- //By SiriusRen #include <cstdio> using namespace std; const int N=20050; int n,m,xx,yy,first[N],next[N],v[N],tot,size[N]; typedef long long ll;ll ans; void add(int x,int y){v[tot]=y,next[tot…
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4008 一道不简单的概率和期望dp题 根据期望的线性性质,容易想到,可以算出每张卡的期望伤害,然后全部加在一起 手算样例之后发现是正确的,那么我们只要求出每张卡的实际被使用的概率就可以了 记第$i$张卡的实际被使用的概率为$fp[i]$ 那么答案就是 $\Large\sum\limits_{i=0}^{n-1}fp[i]\cdot d[i]$ 如何求出$fp[i]$? 首先考虑第一张卡的$f…
感觉挺经典的一道题目. 先用 bfs 预处理下一步走到的位置.因为每一步走法都是固定的,所以可以用dp的方法来做. 1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 467  Solved: 276[Submit][Status] Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时…
题面 题目传送门 分析 定义f(i)f(i)f(i)为iii点不被点亮的概率,p(i)p(i)p(i)为iii自己被点亮的概率,p(i,j)p(i,j)p(i,j)表示i−ji-ji−j 这条边联通的概率,有f(i)=(1−p(i))∗∏i−j(  1−p(i,j)∗(1−f(j))  )\large f(i)=(1-p(i))*\prod_{i-j}(\ \ 1-p(i,j)*(1-f(j))\ \ )f(i)=(1−p(i))∗i−j∏​(  1−p(i,j)∗(1−f(j))  ) 可以看…
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小.…
题意:已知昨天天气与今天天气状况的概率关系(wePro),和今天天气状态和叶子湿度的概率关系(lePro)第一天为sunny 概率为 0.63,cloudy 概率 0.17,rainny 概率 0.2.给定n天的叶子湿度状态,求这n天最可能的天气情况 分析:概率dp设 dp[i][j] 表示第i天天气为j的最大概率,pre[i][j]表示第i天天气最可能为j的前一天天气,dp[i][j]=max(dp[i-1][k]+log(wePro[k][j])+log(lePro[j][lePos[i]]…
BZOJ4868 每个结束位置的最优值很显然具有单调性,三分,再讨论一下就好了. #include<bits/stdc++.h> using namespace std; #define ll long long #define FILE "exam" #define up(i,j,n) for(int i=j;i<=n;i++) #define db long double #define pii pair<int,int> #define pb pus…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
隐马尔可夫(HMM)好讲,简单易懂不好讲. 用最经典的例子,掷骰子.假设我手里有三个不同的骰子.第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6.第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4.第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8. &lt;img src="https://pic4.zhimg.com/435fb8d2d675d…
转自:http://blog.csdn.net/likelet/article/details/7056068 隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢  52nlp 对 HMM 的详细介绍. 考虑下面交通灯的…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
隐马尔可夫模型 (Hidden Markov Model,HMM) 最初由 L. E. Baum 和其它一些学者发表在一系列的统计学论文中,随后在语言识别,自然语言处理以及生物信息等领域体现了很大的价值.平时,经常能接触到涉及 HMM 的相关文章,一直没有仔细研究过,都是蜻蜓点水,因此,想花一点时间梳理下,加深理解,在此特别感谢 52nlp 对 HMM 的详细介绍. 考虑下面交通灯的例子,一个序列可能是红-红/橙-绿-橙-红.这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替,每一个状…
由Andrew Zisserman 教授主导的 VGG 的 ILSVRC 的大赛中的卷积神经网络取得了很好的成绩,这篇文章详细说明了网络相关事宜. 文章主要干了点什么事呢?它就是在在用卷积神经网络下,在采用小的卷积核与小的移动步长的情况下,探索一下网络的深度对目标识别率的影响. 网络的大体结构 网络的输入为224*224的RGB图片,后面跟卷积层,卷积核的大小基本都为3*3有最小的可以保留图片空间分瓣率的卷积核,步长为1个像素,偶尔会有1*1的卷积核,这就相当于加入了一个非线性变换而已.再往后接…
语法树的作用 一棵语法树不仅包括了词性(part of speech), 还包括了短语(如名词短语, 动词短语)和结构化的信息(如主语, 谓语和宾语). 这些信息是进行机器翻译所必须的, 例如机器翻译中就需要使用到结构化信息, 来根据不同的语言规定调整主谓宾的顺序. 上下文无关语法 上下文无关语法(CFG)定义了描述语法树的要素. CFG 是一个四元组, 即(S, sigma, R, N), 其中 S 表示开始符号, sigma 表示词汇表, R 表示语法规则, N 表示非终端词. CFG 的问…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
2.1概率密度函数 2.1.1定义 设p(x)为随机变量x在区间[a,b]的概率密度函数,p(x)是一个非负函数,且满足 注意概率与概率密度函数的区别. 概率是在概率密度函数下对应区域的面积,如上图右所示,其公式如下 我们用概率密度函数来表示在区间[a,b]中所有可能的状态x的可能性. 条件概率密度函数,设p(x|y)是在条件y属于[r,s]下x(x属于[a,b])的概率密度函数,有 N维连续随机变量的联合概率密度函数记为p(X),其中X=(x1,...,xn),xi属于[ai,bi],有时我们…
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
1.数据概述 本报告中采用的数据集来自于UCI经典数据集Adult,最初来源是由1994年Barry Becker的统计数据集,该数据集本来最初的主要任务是根据数据集中的相关属性预测某个人的年收入是大于50K还是小于等于50K.本数据集一共有14个属性用来预测个人的年收入,包括了年龄.工作阶层.教育程度.职业.性别.种族.家庭状况等情况.这14个基本属性中有一项属性为fnlwgt,即final weight,具有相同背景的人的fnlwgt应该类似.同时本数据集一共有32561个样本案例,属性的数…
1.String/Array/Matrix 在Java中,String是一个包含char数组和其它字段.方法的类.如果没有IDE自动完成代码,下面这个方法大家应该记住: toCharArray() //get char array of a String Arrays.sort() //sort an array Arrays.toString(char[] a) //convert to string charAt(int x) //get a char at the specific ind…
以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念.由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍.本文将从Java的角度看问题,包含下面的这些概念: 1. 字符串 如果IDE没有代码自动补全功能,所以你应该记住下面的这些方法. toCharArray() // 获得字符串对应的char数组 Arrays.sort() // 数组排序 Arrays.toString(char[] a) // 数组转成字符串 charAt(int x) // 获得…
本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为三个部分,分别为表示理论,推理理论和学习理论.基本的概率图模型包括贝叶斯网络.马尔科夫网络和隐马尔科夫网络. Student Example 一个学生,拥有成绩.课程难度.智力.SAT的分.推荐信等变量. 通过一张图可以把这些变量的关系表示出来,可以想象成绩由课程难度和智力决定,SAT成绩由智力决定…
最大似然估计&贝叶斯估计 与传统计量模型相对的统计方法,存在 1)参数的解释不同:经典估计:待估参数具有确定值它的估计量才是随机的.如果估计量是无偏的,该估计量的期望等于那个确定的参数.bayes待估参数服从某种分布的随机变量. 2)利用的信息不同:经估:只利用样本信息,bayes要求事先提供一个参数的先验分布,即人们对有关参数的主观认识,是非样本信息.在参数估计中它们与样本信息一起被利用. 3)对随机误差项的要求不同,经典估计除了最大似然法在参数估计中不要求知道随机误差项的具体分布形式在假设检…
控制相关度 相关度评分背后的理论 如何计算评分的 Lucene 使用布尔模型(Boolean model) 查找匹配文档 并主要的借鉴了 词频/逆向文档频率(term frequency/inverse document frequency) 和 向量空间模型(vector space model),同时加入 协调因子 字段长度归一化 以及词或查询语句权重提升 布尔模型 就是在查询中使用 AND . OR 和 NOT (与.或和非) 来匹配文档 词频/逆向文档频率(TF/IDF) 一个文档的相关…
S0.6 直方图均衡化 直方图均衡化能提高图像的质量 累积直方图 这是后面均衡化所要知道的先验知识. 如果说直方图统计的是等于像素值的数量,那么累积直方图统计的就是小于等于像素值的数量 均衡化步骤 我们均衡化的目标就是把灰度直方图变得平坦,那么什么是最平坦的直方图呢?当然就是下图这样: 4X4的图像,每个像素有4个,按概率论的角度来讲,这是均匀分布. 我们一般用和概率相关的直方图来表示,像这样: 我们希望直方图都像均匀分布的直方图那样,可以换种思路:只要任何直方图的累积直方图像均匀分布的累积直方…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…
8. 过滤噪声边 在当前的伴生关系中,边的权重是基于一对概念同时出现在一篇论文中的频率来计算的.这种简单的权重机制的问题在于:它并没有对一对概念同时出现的原因加以区分,有时一对概念同时出现是由于它们具有某种值得我们关注的语义关系,但有时一对概念同时出现只是因为都频繁地出现在所有文档中,同时出现只是碰巧而已.我们需要使用一种新的权重机制,在给定概念在数据中的总体频繁度的情况下,它需要考虑给定的两个概念对于一个文档的“意义”或是“新颖度”.我们将使用皮尔逊卡方测试(Pearson’s chi-squ…
在Kaldi中,单音素GMM的训练用的是Viterbi training,而不是Baum-Welch training.因此就不是用HMM Baum-Welch那几个公式去更新参数,也就不用计算前向概率.后向概率了.Kaldi中用的是EM算法用于GMM时的那三个参数更新公式,并且稍有改变.  Baum-Welch算法更新参数时,因为要计算前向后向概率,很费时间,因此使用Viterbi Training作为Baum-Welch算法的近似.在Baum-Welch算法中,计算前向后向概率时,要用到所有…
HNOI2015 亚瑟王(概率DP) 根据期望的线性性,我们只需要算出每一种卡牌触发的概率就可以算出期望的值 考虑与第\(i\)张卡牌触发概率相关的量,除了\(p_i\)还有前\(i-1\)张卡牌中触发过的卡牌的数量. 假设前\(i\)张卡牌中触发了\(j\)张的概率为\(f_{i,j}\),那么第\(i\)张卡牌的触发概率就是\(\sum f_{i-1,j} \times (1 - (1 - p_i)^{R - j})\) 一个不好理解的地方:对于某一张卡牌,它触发的概率与之前卡牌在哪一个回合…
编程面试的10大算法概念汇总   以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念.由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍.本文将从Java的角度看问题,包含下面的这些概念: 1. 字符串2. 链表3. 树4. 图5. 排序6. 递归 vs. 迭代7. 动态规划8. 位操作9. 概率问题10. 排列组合 1. 字符串 如果IDE没有代码自动补全功能,所以你应该记住下面的这些方法.         toCharArray() // 获得字…
Randow使用 http://blog.csdn.net/pipisorry/article/details/39508417 概率相关使用 转:http://www.cnblogs.com/NaughtyBaby/p/5568668.html :该文是上了开智学堂数据科学基础班的课后做的笔记,主讲人是肖凯老师. 概率与统计分析 描述性分析 用一个数字描述一组数字的特征.用一个数字来归纳一组数字,这个数字称为统计量或统计指标. 均值.中位数:描述一组数据的集中趋势 方差.标准差.四分位距:描述…