pandas 4 处理缺失数据nan】的更多相关文章

from __future__ import print_function import pandas as pd import numpy as np np.random.seed(1) dates = pd.date_range('20130101', periods=6) df = pd.DataFrame(np.arange(24).reshape((6,4)), index=dates, columns=['A', 'B', 'C', 'D']) df.iloc[0,1] = np.n…
  数据不完整在数据分析的过程中很常见. pandas使用浮点值NaN表示浮点和非浮点数组里的缺失数据. pandas使用isnull()和notnull()函数来判断缺失情况. 对于缺失数据一般处理方法为滤掉或者填充. 滤除缺失数据   对于一个Series,dropna()函数返回一个包含非空数据和索引值的Series,例如: 对于DataFrame,dropna()函数同样会丢掉所有含有空元素的数据,例如:   但是可以指定how='all',这表示只有行里的数据全部为空时才丢弃,例如:…
汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到最小值和最大值的索引位置 idxmin.indxmax 计算能够获取到最小值和最大值的索引值 quantile 计算四分位数 sum 值的总和 mean 值的平均数 median 值的算术中位数(第50百分位数) mad 根据平均值计算平均绝对离差 var 样本值的方差 std 样本值的标准差 sk…
import pandas as pd import numpy as np from numpy import nan as NaN 一.处理Series对象 通过dropna()滤除缺失数据 from numpy import nan as NaN se1=pd.Series([4,NaN,8,NaN,5]) print(se1) se1.dropna() 结果如下: 0 4.0 1 NaN 2 8.0 3 NaN 4 5.0 dtype: float64 0 4.0 1 NaN 2 8.0…
pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据.它只是一个便于被检测的标记而已. >>> string_data = Series(['aardvark','artichoke',np.nan,'avocado']) >>> string_data 0 aardvark 1 artichoke 2 NaN 3 avocado dtype: object >>> string_data.isnull() 0 False 1 False 2 T…
pandas使用浮点值NaN表示浮点和非浮点数组中的缺失数据: In [14]: string_data = Series(['aardvark','artichoke',np.nan,'avocado']) In [15]: string_data Out[15]: 0 aardvark 1 artichoke 2 NaN 3 avocado dtype: object In [16]: string_data.isnull() Out[16]: 0 False 1 False 2 True…
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别.抽象点说,它使你能以低纬度形式处理高纬度数据.我们来看一个简单的栗子:创建一个Series,并用一个由列表或数组组成的列表作为索引: data = pd.Series(np.random.randn(9), index=[['a',…
注:Pandas(Python Data Analysis Library) 是基于 NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.此外,Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. 相比较于 Numpy,Pandas 使用一个二维的数据结构 DataFrame 来表示表格式的数据, 可以存储混合的数据结构,同时使用 NaN 来表示缺失的数据,而不用像 Numpy 一样要手工处理缺失的数据,并且 Pandas 使用轴标签来表示行和列. P…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
pandas对象中的数据可以通过一些内置的方式进行合并: pandas.merge 可根据一个或多个键将不同的DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠到一起 实例的方法conbine_first 可以将重复的数据编接到一起,用一个对象中的值填充另一个对象的缺失值. 数据库风格的DataFrame合并 In [51]: df1 = DataFrame({'key':['b','b','a','c','a','a','b'],'data1':rang…
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:…
处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: (1) 完全随机缺失:若某变量的缺失数据与其他任何观测或未观测变量都不相关,则数据为完全随机缺失(MCAR) (2) 随机缺失:若某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关,则数据为随机缺失(MAR) (3) 非随机缺失 若缺失数据不属于MCAR…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 import pandas as pd import numpy as np file =…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
使用Pandas将多个数据表合一 将多张数据表合为一张表,便于统计分析,进行这一操作的前提为这多张数据表互相之间有关联信息,或者有相同的列. import pandas as pd unames = ['user_id', 'gender', 'age','occupation','zip'] users = pd.read_table('users.dat', sep='::',header=None, names=unames) rnames = ['user_id', 'movie_id'…
先ctrl+H ,出现如下对话框 点击“定位”,选择“空值” 在表格中空的位置上编辑栏输入0,CTRL+ENTER,即可将缺失数据全部用0补齐.…
Python3 Pandas的DataFrame格式数据写入excle文件.json.html.剪贴板.数据库 一.DataFrame格式数据 Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFrame是一张多维的表,大家可以把它想象成一张Excel表单或者Sql表: import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(…
使用pandas保存豆瓣短评数据 Python爬虫(入门+进阶)     DC学院 本节课程的内容是介绍open函数和pandas两种保存已爬取的数据的方法,并通过实际例子使用pandas保存数据. 保存数据的方法: open函数保存 pandas包保存(本节课重点讲授) csv模块保存 numpy包保存 使用open函数保存数据 1. open函数用法 使用with open()新建对象 写入数据 import requests from lxml import etree   url = '…
使用pandas把mysql的数据导入MongoDB. 首先说下我的需求,我需要把mysql的70万条数据导入到mongodb并去重, 同时在第二列加入一个url字段,字段的值和第三列的值一样,代码如下: # -*- coding: utf-8 -*- # @Time : 2018/9/29 17:20 # @Author : cxa # @File : run.py # @Software: PyCharm import pandas as pd from sqlalchemy import…
本文对应<R语言实战>第15章:处理缺失数据的高级方法 本文仅在书的基础上进行简单阐述,更加详细的缺失数据问题研究将会单独写一篇文章. 处理缺失值的一般步骤: 识别缺失数据: 检查导致数据缺失的原因: 删除包含缺失值的实例或用合理的数值代替(插补)缺失值. 缺失数据的分类: 完全随机缺失(MCAR):某变量的缺失数据与其他任何观测或未观测的变量都不相关: 随机缺失(MAR):某变量上的缺失数据与其他观测变量相关,与它自己的未观测值不相关: 非随机缺失(NMAR):不属于MCAR或MAR的变量.…
第五章 方差分析 试验指标是什么? 就是统计的测量值,eg:身高体重 试验单位( experimental unit )是什么? 实验载体,比如一只小白鼠 均方是什么? 就是方差 随机模型的τ有何特点? 标准正态分布 固定模型与随机模型的比较 最大的不同是固定模型研究均值:随机模型研究τ 方差分析结果中需要注意的是? 要比较0.01和0.05,看是不是极显著或者显著 字母标记法的判定原则? 在各平均数间,凡有一个相同标记字母的即为差异不显著,凡具不同标记字母的即为差异显著.只要有相同字母存在就认…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们在使用pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价. 而在pandas中,针对不同的应用场景,我们可以使用resample().groupby()以及Grouper()来非常高效快捷地完成此类任务. 图1 2 在pan…
1.创建带有缺失值的数据库:   import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three']) # 随机产生5行3列的数据 df.ix[1, :-1] = np.nan # 将指定数据定义为缺失 df.ix[1:-1, 2] = np.nan print('\ndf1') # 输出df…
数据丢失(缺失)在现实生活中总是一个问题. 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题. 在这些领域,缺失值处理是使模型更加准确和有效的重点. 何时以及为什么数据丢失? 想象一下有一个产品的在线调查.很多时候,人们不会分享与他们有关的所有信息. 很少有人分享他们的经验,但不是他们使用产品多久; 很少有人分享使用产品的时间,经验,但不是他们的个人联系信息. 因此,以某种方式或其他方式,总会有一部分数据总是会丢失,这是非常常见的现象. 现在来看看如何处…
目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值interpolation 使用replace替换值 简介 在数据处理中,Pandas会将无法解析的数据或者缺失的数据使用NaN来表示.虽然所有的数据都有了相应的表示,但是NaN很明显是无法进行数学运算的. 本文将会讲解Pandas对于NaN数据的处理方法. NaN的例子 上面讲到了缺失的数据会被表…
利用pandas.DataFrame.dropna处理含有缺失值的数据 1.使用形式: DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) 功能:处理含有缺失值的dataframe,将缺失值的行列过滤 2.参数解释: 参数:axis : 确定过滤行还是列,默认为0,可取值为:{0 or ‘index’, 1 or ‘columns’} how : 确定过滤的标准,可选值为{}‘any’, ‘al…
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维array类似,二者与Python基本数据结构List很相似,Series能保存不同数据类型,字符串,boolbean值.数字等都能保存在Series中 DataFrame 二维的表格型数据结构.很多功能与R中的data frame类似.可以将DataFrame理解为Series的容器. Series类…