FileInputFormat】的更多相关文章

前言 首先确保已经搭建好Hadoop集群环境,可以参考<Linux下Hadoop集群环境的搭建>一文的内容.我在测试mapreduce任务时,发现相比于使用Job.setNumReduceTasks(int)控制reduce任务数量而言,控制map任务数量一直是一个困扰我的问题.好在经过很多摸索与实验,终于梳理出来,希望对在工作中进行Hadoop进行性能调优的新人们有个借鉴.本文只针对FileInputFormat的任务划分进行分析,其它类型的InputFormat的划分方式又各有不同.虽然如…
MapReduce框架要处理数据的文件类型 FileInputFormat这个类决定. TextInputFormat是框架默认的文件类型,可以处理Text文件类型,如果你要处理的文件类型不是Text, 譬如说是Xml或DB,你就需要自己实现或用库中已有的类型. FileInputFormat的主要方法之一getSplits完成的功能是获取job要处理的路径文件所在的block信息. 数据结构:FileInputSplit 存储了文件的位置信息,如Host,所属文件信息,开始offset,还有长…
FileInputFormat(org.apache.hadoop.mapreduce.lib.input.FileInputFormat)是专门针对文件类型的数据源而设计的,也是一个抽象类,它提供两方面的作用:   (1)定义Job输入文件的静态方法: (2)为输入文件形成切片的通用实现:   至于如何将切片中的数据转换为一条条的“记录”则根据文件类型的不同交由具体的子类负责实现.   FileInputFormat input paths   FileInputFormat提供了四个静态方法…
本篇分两部分,第一部分分析使用 java 提交 mapreduce 任务时对 mapper 数量的控制,第二部分分析使用 streaming 形式提交 mapreduce 任务时对 mapper 数量的控制. 环境:hadoop-3.0.2 前言: 熟悉 hadoop mapreduce 的人可能已经知道,即使在程序里对 conf 显式地设置了 mapred.map.tasks 或 mapreduce.job.maps,程序也并没有运行期望数量的 mapper. 这是因为,mapper 的数量由…
这是FileInputFormat中的一个方法,看一下它的功能,多看源码,理解hadoop,同时提高自己的java编程能力: private static String[] getPathStrings(String commaSeparatedPaths) { int length = commaSeparatedPaths.length(); int curlyOpen = 0; int pathStart = 0; boolean globPattern = false; List<Str…
在对日志等大表数据进行处理的时候需要人为地设置任务的map数,防止因map数过小导致集群资源被耗光.可根据大表的数据量大小设置每个split的大小. 例如设置每个split为500M: set mapreduce.input.fileinputformat.split.maxsize=500000000;  //控制map任务输入划分的最大字节数 set mapreduce.input.fileinputformat.split.minsize=500000000;  //控制map任务输入划分…
1. 需求 将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件格式),SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value 三个小文件 one.txt yongpeng weidong weinan sanfeng luozong xiaoming two.txt shuaige changmo zhenqiang dongli lingu xuanxuan…
近期開始使用MapReduce,发现网上大部分样例都是对文本数据进行处理的,也就是说在读取输入数据时直接使用默认的TextInputFormat进行处理就可以.对于文本数据处理,这个类还是能满足一部分应用场景.可是假设要处理以二进制形式结构化记录存储的文件时,这些类就不再适合了. 本文以一个简单的应用场景为例:对依照二进制格式存储的整数做频数统计.当然,也能够在此基础上实现排序之类的其它应用.实现该应用的主要难点就是怎样处理输入数据.參考<权威指南·第三版>得知须要继承FileInputFor…
import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.fs.BlockLocation; import org.apache.hadoop.fs.FileStatus; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apa…
参考 FileInputFormat类中split切分算法和host选择算法介绍  以及 Hadoop2.6.0的FileInputFormat的任务切分原理分析(即如何控制FileInputFormat的map任务数量)  以及 Hadoop中FileInputFormat计算InputSplit的getSplits方法的流程  以及 hadoop作业分片处理以及任务本地性分析(源码分析第一篇) 分析前先介绍一下: ( 这里要注意下, Block 的 hosts 和 Split 的 hosts…
文件切分算法 文件切分算法主要用于确定InputSplit的个数以及每个InputSplit对应的数据段. FileInputFormat以文件为单位切分成InputSplit.对于每个文件,由以下三个属性值确定其对应的InputSplit的个数. goalSize:根据用户期望的InputSplit数据计算,即totalSize/numSplit.totalSize为文件总大小:numSplit为用户设定的Map Task个数,默认情况下是1. minSize:InputSplit的最小值,由…
MapReduce之提交job源码分析 job 提交流程源码详解 //runner 类中提交job waitForCompletion() submit(); // 1 建立连接 connect(); // 1)创建提交 job 的代理 new Cluster(getConfiguration()); // (1)判断是本地 yarn 还是远程 initialize(jobTrackAddr, conf); // 2 提交 job submitter.submitJobInternal(Job.…
说明 TextInputFormat默认是按行切分记录record,本篇在于理解,对于同一条记录record,如果被切分在不同的split时是怎么处理的.首先getSplits是在逻辑上划分,并没有物理切分,也就是只是记录每个split从文件的个位置读到哪个位置,文件还是一个整体.所以在LineRecordReader中,它的处理方式是每个split多读一行,也就是读到下一个split的第一行.然后除了每个文件的第一个split,其他split都跳过第一行,进而避免重复读取,这种方式去处理. F…
1. TextInputFormat 2.KeyValueTextInputFormat 3. NLineInputFormat…
mapreduce多文件输出的两方法   package duogemap;   import java.io.IOException;   import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apach…
package duogemap; import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text…
hadoop 2.7.3本地环境运行官方wordcount 基本环境: 系统:win7 虚机环境:virtualBox 虚机:centos 7 hadoop版本:2.7.3 本次先以独立模式(本地模式)来运行. 参考: hadoop docs ​ 1 hadoop 安装 java环境 yum install java-1.8.0-openjdk hadoop下载压缩包并安装 mkdir ~/hadoop/ cd ~/hadoop/ # http://apache.fayea.com/hadoop…
一切从示例程序开始: 示例程序 Hadoop2.7 提供的示例程序WordCount.java package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.…
向任务传递定制参数 获取任务待定的信息 生成多个输出 与关系数据库交互 让输出做全局排序   1.向任务传递作业定制的参数        在编写Mapper和Reducer时,通常会想让一些地方可以配置.例如第5章的联结程序被固定地写为取第一个数据列作为联结键.如果用户可以在运行时指定某个列作为联结键,就会让程序更具普适性.hadoop自身使用一个配置对象来存储所有作业的配置属性.你也可以使用这个对象将参数传递到Mapper和Reducer.        我们已经知道MapReduce的dri…
Hadoop程序开发的独门绝技 在本地,伪分布和全分布模式下调试程序 程序输出的完整性检查和回归测试 日志和监控 性能调优   1.开发MapReduce程序   [本地模式]        本地模式下的hadoop将所有的运行都放在一个单独的Java虚拟机中完成,并且使用的是本地文件系统(非HDFS).在本地模式中运行的程序将所有的日志和错误信息都输出到控制台,最后它会给出所处理数据的总量.   对程序进行正确性检查: 完整性检查 回归测试 考虑使用long而非int     [伪分布模式]…
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter   1.链接MapReduce作业   [顺序链接MapReduce作业]   mapreduce-1 | mapreduce-2 | mapreduce-3 | ...   [具有复杂依赖的MapReduce链接]        有时,在复杂数据处理任务中的子任务并不是按顺序运行的,因此它们的MapReduce作业不能按线性方式链接.例如,mapreduce1处理一个数据集,mapreduce2独立处理另一个数…
2016-12-21  16:53:49 mapred-default.xml mapreduce.input.fileinputformat.split.minsize 0 The minimum size chunk that map input should be split into. Note that some file formats may have minimum split sizes that take priority over this setting. 2016-12…
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个例子,也算是对自己写的程序的总结了. 首先解释下环比,例如我们要算本周的环比,那么计算方式就是本周的数据和上周数字的差值除以上周数值就是环比了,如果是月的环比就是本月和上月数据的差值除以上月数字就是本月环比了.不过本mapreduce实例不会直接算出比值,只是简单求出不同时间段数值的差值,最终环比结…
在上面一节我们分析了JobTracker调用JobQueueTaskScheduler进行任务分配,JobQueueTaskScheduler又调用JobInProgress按照一定顺序查找任务的流程,获得了任务之后,将任务封装为TaskTrackerAction数组返回的整个过程.TaskTracker通过心跳响应接收到了这个数组.本节我们继续分析,TaskTracker拿到了这个数组之后,如何对任务进行处理的. 1,TaskTracker在其方法offerService中,将得到的任务加入队…
伪分布式 hadoop的三种安装方式: Local (Standalone) Mode Pseudo-Distributed Mode Fully-Distributed Mode 安装之前需要 $ sudo apt-get install ssh      $ sudo apt-get install rsync 详见:http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.htm…
1.kerberos验证 a.下载对应版本JCE(Java Cryptography Extension),解压拷贝local_policy.jar/US_export_policy.jar到$JAVA_HOME//jre/lib/security b.在resource即classes路径下添加hbase-site.xml <configuration> <!-- 访问的hbase集群的名字 --> <property> <name>hbase.clust…
MapReduce编程模型 在Google的一篇重要的论文MapReduce: Simplified Data Processing on Large Clusters中提到,Google公司有大量的诸如Web请求日志.爬虫抓取的文档之类的数据需要处理,由于数据量巨大,只能将其分散在成百上千台机器上处理,如何处理并行计算.如何分发数据.如何处理错误,所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理. 为了解决上述复杂的问题,Google设计一个新的抽象模型,使用这…
第一部分:              初识Hadoop 一.             谁说大象不能跳舞 业务数据越来越多,用关系型数据库来存储和处理数据越来越感觉吃力,一个查询或者一个导出,要执行很长时间,这是因为数据的吞吐量太大了,导致整个程序看上去像一只体型庞大.行动笨拙的大象. Hadoop天生就是来解决数据吞吐量太大的,它可以使大数据的存储和处理变的快速.使得应用程序运行的更加的轻盈.像<Hadoop权威指南>封皮上那句话:"谁说大象不能跳舞?!". 二.     …
Spark-Hadoop集群搭建 视频教程: 1.优酷 2.YouTube 配置java 启动ftp [root@master ~]# /etc/init.d/vsftpd restart 关闭 vsftpd:                                                     [失败] 为 vsftpd 启动 vsftpd:                                               [确定] 默认情况下 root不允许使用f…
学习 hadoop,必不可少的就是编写 MapReduce 程序.当然,对于简单的分析程序,我们只需一个 MapReduce 任务就能搞定,然而对于比较复杂的分析程序,我们可能需要多个Job或者多个Map或者Reduce进行分析计算. 本课程我们主要学习多个 Job 或者多个 MapReduce 的编程形式. MapReduce 的主要有以下几种编程形式. 迭代式 MapReduce MapReduce 迭代方式,通常是将上一个 MapReduce 任务的输出作为下一个 MapReduce 任务…