loj2305 NOI2017 游戏】的更多相关文章

题目链接 思路 既然\(x\)的数量那么小,我们就可以先把每个\(x\)搜索一遍. 枚举x的时候不需要把\(a,b,c\)全枚举一遍,只要枚举其中的两个就可以枚举到当前位置选任何车的情况. 然后就变成了只有\('a','b','c'\)的序列.寻找满足题目要求的方案. \(2-sat\)模型. 连边的时候注意一些技巧,否则\(if\)写到自闭.. 在\(UOJ\)上会被卡掉\(3\)分.实在懒得去卡常了233 代码 /* * @Author: wxyww * @Date: 2019-04-29…
题目 P3825 [NOI2017]游戏 做法 \(x\)地图外的地图好做,模型:\((x,y)\)必须同时选\(x \rightarrow y,y^\prime \rightarrow x^\prime\) 难点在处理\(x\)地图上,三进制枚举车,状压一下也能做,理论时间复杂度\(O(3^d 4m)\),卡不满优化一下也能过吧 往更深层考虑??不枚举选哪个了,枚举选地图,其实只用考虑\(A,B\)就行,\(C\)包含在里面了(反正也只要选一辆) 时间复杂度\(O(2^d 4m)\) My c…
[BZOJ4945][Noi2017]游戏 题目描述 题解:2-SAT学艺不精啊! 这题一打眼看上去是个3-SAT?哎?3-SAT不是NPC吗?哎?这题x怎么只有8个?暴力走起! 因为x要么不是A要么不是B,所以直接2^8枚举所有x就行了.然后就变成了一个2-SAT问题.假设有两场游戏1,2,分别可以使用的地图为A1,A2,B1,B2,如果有一个限制是1 A 2 A,那么选A1就必须选A2,然后我这个沙茶就开开心心的拿了55分. 为什么不对?我建出来的图显然不对偶啊!考虑逆否命题,选A1就必须选…
[Luogu P3825] [NOI2017] 游戏 (2-SAT) 题面 题面较长,略 分析 看到这些约束,应该想到这是类似2-SAT的问题.但是x地图很麻烦,因为k-SAT问题在k>2的时候是NPC问题,所以不能直接做. 观察到\(d \leq 8\),我们可以直接枚举每个x地图可以让哪些车使用,然后把它转换成标准的2-SAT问题.由于可以用车bc,ac已经覆盖了所有情况,每个x地图只可能是种类A或种类B,枚举的时间复杂度\(2^d\) 对于枚举的每一种情况,我们现在已经得到了每个地图适合哪…
题目大意 2-SAT,其中有\(d\)(\(d\leq 8\))个点是\(3-SAT\). 题解 枚举\(d\)个点不取三个中(假设三个为\(a,b,c\))的哪一个,然后整体变成做\(2-SAT\). 注意枚举完不选\(a\)(即选\(b或c\))和不选\(b\)(即选\(a或c\))后,不选\(c\)(即选\(a或b\))已经包含在前两种中,因此搜索部分的时间复杂度是\(\Theta(2^d)\)的. 代码 #include<algorithm> #include<cmath>…
题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏. 小 L 的赛车有三辆,分别用大写字母A.B.C表示.地图一共有四种,分别用小写字母x.a.b.c表示.其中,赛车A不适合在地图a上使用,赛车B不适合在地图b上使用,赛车C不适合在地图c上使用,而地图x则适合所有赛车参加.适合所有赛车参加的地图并不多见,最…
这是约半年前写的题解了,就搬过来吧 感觉这是NOI2017最水的一题(当然我还是不会2333),因为是一道裸的2-SAT.我就是看着这道题学的2-SAT 算法一:暴力枚举.对于abc二进制枚举,对于x则采用三进制枚举即可,复杂度O(3^d*2^(n-d)),再进行适当剪支,期望得分:40~50 算法二:对于d=0的点,采用2-SAT算法,这是最裸的2-SAT,这样,复杂度为O(n+m),综合算法一,期望得分为60 算法三:不妨对于d个x,采用三进制枚举,枚举a/b/c,再做裸的2-SAT即可,复…
题目 题目背景 狂野飙车是小 L 最喜欢的游戏.与其他业余玩家不同的是,小 L 在玩游戏之余,还精于研究游戏的设计,因此他有着与众不同的游戏策略. 题目描述 小 L 计划进行nn 场游戏,每场游戏使用一张地图,小 L 会选择一辆车在该地图上完成游戏. 小 L 的赛车有三辆,分别用大写字母A.B.C表示.地图一共有四种,分别用小写字母x.a.b.c表示.其中,赛车A不适合在地图a上使用,赛车B不适合在地图b上使用,赛车C不适合在地图c上使用,而地图x则适合所有赛车参加.适合所有赛车参加的地图并不多…
Description Solution 首先我们发现一个位置如果不是 \('x'\),那么就只有两种选择 而 \('x'\) 的个数小于等于 \(8\),直接枚举是哪个就好了 然后就是 \(2-sat\) 连边: 设一个点 \(i\) 的对立点为 \(i'\) 如果 \(a[i]=h[i]\),那么就可以直接忽略这个限制 如果 \(a[j]=h[j]\),那么 \(i\) 就不能选 \(a[i]\),为了保证这个限制直接连边 \((i,i')\) 就好了 如果上述两种情况都不是,那么直接连 \…
题目描述 http://www.lydsy.com/JudgeOnline/upload/Noi2017D2.pdf 题解 如果说没有x的话,那么每一局只能有两种选择,可以描述为是/非,每条限制也可以描述是x即y. 那么这就是一道经典的2-SAT问题. 现在有了x的限制,但是观察到x的数目很少最多只有8,所以我们可以考虑枚举限制. 注意到其他的地方有两种情况是因为有一种情况被ban了,所以我们考虑枚举2^x枚举该局禁哪个,因为禁A和禁B已经可以包含所有的情况,所以就不用禁C了. 仅为有ban的存…