作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体结构,交通路网数据,以及很火的知识图谱等,甚至规则网格结构数据(如图像,视频等)也是图数据的一种特殊形式,因此图是一个很值得研究的领域. 针对graph的研究可以分为三类: 1.经典的graph算法,如生成树算法,最短路径算法,复杂一点的二分图匹配,费用流问题等等: 2.概率图模型,将条件概率表达为…
目录 摘要 一.引言 二.相关工作 基于体素网格的特征学习 直接从非结构化点云中学习特征 从多视图模型中学习特征 几何深度学习的学习特征 三.GAPNet架构 3.1 GAPLayer 局部结构表示 单头GAPLayer 多头机制 3.2注意力池化层 3.3 GAPNet架构 四.实验 4.1分类 数据集 网络结构 训练细节 结果 消融研究 4.2 语义部件分割 数据集 模型结构 训练细节 结果 五.结论 GAPNet: Graph Attention based Point Neural Ne…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
论文信息 论文标题:GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training论文作者:Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, Jie Tang论文来源:2020, KDD论文地址:download论文代码:download 1 Introduction 本文的预训练任务:子图实例判…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…
最近做了一些和gnn相关的工作,经常听到GCN 和 embedding 相关技术,感觉很是困惑,所以写下此博客,对相关知识进行索引和记录: 参考链接: https://www.toutiao.com/a6690680620642730510/ graph embedding 技术学习 如何理解 Graph Convolutional Network(GCN): https://www.zhihu.com/question/54504471/answer/332657604 卷积神经网络的卷积核:…
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常被广泛应用在动作识别任务上,现有的方法已经证实骨架中的关键点和骨头信息对动作识别任务非常有用.然而如何将两种类型的数据最大化地利用还没有被很好地解决. 作者将骨架数据表示成一个有向非循环图(Directed acyclic graph),该图基于自然人体的节点和骨骼的动力学依赖. 这个新颖的图结构用…
图嵌入应用场景:可用于推荐,节点分类,链接预测(link prediction),可视化等场景 一.考虑网络结构 1.DeepWalk (KDD 2014) (1)简介 DeepWalk = Random Walk + Skip-gram 论文链接 作者:Bryan Perozzi, Rami Al-Rfou, Steven Skiena 主要思想: 假设邻域相似,使用DFS构造邻域 step1:DeepWalk思想类似word2vec,word2vec是通过语料库中的句子序列来描述词与词的共现…
9 Real-Time Streaming Graph Embedding Through Local Actions 11 link:https://scholar.google.com.sg/scholar_url?url=https://par.nsf.gov/servlets/purl/10109798&hl=zh-TW&sa=X&ei=SyiOYtaXG-CO6rQPzPWC4Ac&scisig=AAGBfm3aT0E5adlGC7Ygeu2vb7WxgQF2lA…