首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
我理解的Linux内存管理
】的更多相关文章
我理解的Linux内存管理
众所周知,内存管理是Linux内核中最基础,也是相当重要的部分.理解相关原理,不管是对内存的理解,还是对大家写用户态代码都很有帮助.很多书上.很多文章都写了相关内容,但个人总觉得内容太复杂,不是太容易理解,这里想用我自己理解的简单的方式来描述,希望能有所帮助.本篇文章由圆柱模板博主原创,转载需注明! 内存的分配 大家写代码时,应该都会分配内存,不同语言,层次不同,使用的接口不同,不管使用哪种方式,在Linux系统中,基本上都会调用到C库的malloc接口,那就从malloc分配内存开始.…
【转帖】linux内存管理原理深入理解段式页式
linux内存管理原理深入理解段式页式 https://blog.csdn.net/h674174380/article/details/75453750 其实一直没弄明白 linux 到底是 段页式 还是仅是段式内存管理 2017-07-20 08:52:39 楼下丶小黑 阅读数 6275 前一段时间看了<深入理解Linux内核>对其中的内存管理部分花了不少时间,但是还是有很多问题不是很清楚,最近又花了一些时间复习了一下,在这里记录下自己的理解和对Linux中内存管理的一些看法和认识.…
浅谈Linux内存管理机制
经常遇到一些刚接触Linux的新手会问内存占用怎么那么多?在Linux中经常发现空闲内存很少,似乎所有的内存都被系统占用了,表面感觉是内存不够用了,其实不然.这是Linux内存管理的一个优秀特性,在这方 面,区别于Windows的内存管理.主要特点是,无论物理内存有多大,Linux 都将其充份利用,将一些程序调用过的硬盘数据读入内存,利用内存读写的高速特性来提高Linux系统的数据访问性能.而Windows是只在需要内存时, 才为应用程序分配内存,并不能充分利用大容量的内存空间.换句话说,每增加…
linux内存管理
一.Linux 进程在内存中的数据结构 一个可执行程序在存储(没有调入内存)时分为代码段,数据段,未初始化数据段三部分: 1) 代码段:存放CPU执行的机器指令.通常代码区是共享的,即其它执行程序可调用它.假如机器中有数个进程运行相同的一个程序,那么它们就可以使用同一个代码段. 2) 数据段:存放已初始化的全局变量.静态变量(包括全局和局部的).常量.static全局变量和static函数只能在当前文件中被调用. 3) 未初始化数据区(uninitializeddata s…
了解linux内存管理机制(转)
今天了解了下linux内存管理机制,在这里记录下,原文在这里http://ixdba.blog.51cto.com/2895551/541355 根据自己的理解画了张图: 下面是转载的内容: 一 物理内存和虚拟内存 我们知道,直接从物理内存读写数据要比从硬盘读写数据要快的多,因此,我们希望所有数据的读取和写入都在内存完成,而内存是有限的,这样就引出了物理内存与虚拟内存的概念.物理内存就是系统硬件提供的内存大小,是真正的内存,相对于物理内存,在linux下还有一个虚拟内存的概念,…
Linux内存管理之slab分配器
slab分配器是什么? 参考:http://blog.csdn.net/vanbreaker/article/details/7664296 slab分配器是Linux内存管理中非常重要和复杂的一部分,其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢.而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个sl…
自己写的书《深入理解Android虚拟机内存管理》,不出版只是写着玩
百度网盘地址:https://pan.baidu.com/s/1jI4xZgE 我给起的书名叫做<深入理解Android虚拟机内存管理>.本书分为两个部分,前半部分主要是我对Linux0.11版内核的内存管理模块的深入分析:后半部分主要是对Android虚拟机Dalvik的垃圾回收机制的分析和内存管理的分析. 从2016年初开始研究Linux内核时的一脸懵逼,到现在的0.11版内核的内存管理机制应该算是非常熟悉了:2.4及以上版本的内存管理不敢说精通,但肯定是入门了.感谢自己的坚持,感谢自己对…
Linux内存管理专题
Linux的内存管理涉及到的内容非常庞杂,而且与内核的方方面面耦合在一起,想要理解透彻非常困难. 在开始学习之前进行了一些准备工作<如何展开Linux Memory Management学习?>, 1. 参考资料 遂决定以如下资料作为参考,进行Linux内存管理的研究: <奔跑吧 Linux内核>:以第2章为蓝本展开,这是目前能获取的紧跟当前内核发展(Linux 4.0),并且讲的比较全面的一本资料. <Understanding the Linux Virtual Memo…
伙伴系统之避免碎片--Linux内存管理(十六)
1 前景提要 1.1 碎片化问题 分页与分段 页是信息的物理单位, 分页是为了实现非连续分配, 以便解决内存碎片问题, 或者说分页是由于系统管理的需要. 段是信息的逻辑单位,它含有一组意义相对完整的信息, 分段的目的是为了更好地实现共享, 满足用户的需要. 页的大小固定且由系统确定, 将逻辑地址划分为页号和页内地址是由机器硬件实现的. 而段的长度却不固定, 决定于用户所编写的程序, 通常由编译程序在对源程序进行编译时根据信息的性质来划分. 分页的作业地址空间是一维的. 分段的地址空间是二维的.…
伙伴系统之伙伴系统概述--Linux内存管理(十五)
在内核初始化完成之后, 内存管理的责任就由伙伴系统来承担. 伙伴系统基于一种相对简单然而令人吃惊的强大算法. Linux内核使用二进制伙伴算法来管理和分配物理内存页面, 该算法由Knowlton设计, 后来Knuth又进行了更深刻的描述. 伙伴系统是一个结合了2的方幂个分配器和空闲缓冲区合并计技术的内存分配方案, 其基本思想很简单. 内存被分成含有很多页面的大块, 每一块都是2个页面大小的方幂. 如果找不到想要的块, 一个大块会被分成两部分, 这两部分彼此就成为伙伴. 其中一半被用来分配, 而另…
Linux内存管理 (25)内存sysfs节点解读
1. General 1.1 /proc/meminfo /proc/meminfo是了解Linux系统内存使用状况主要接口,也是free等命令的数据来源. 下面是cat /proc/meminfo的一个实例. MemTotal: 8054880 kB---------------------对应totalram_pages大小 MemFree: kB---------------------对应vm_stat[NR_FREE_PAGES]大小 MemAvailable: kB---------…
Linux内存管理 (2)页表的映射过程
专题:Linux内存管理专题 关键词:swapper_pd_dir.ARM PGD/PTE.Linux PGD/PTE.pgd_offset_k. Linux下的页表映射分为两种,一是Linux自身的页表映射,另一种是ARM32 MMU硬件的映射. 1. ARM32页表映射 由于ARM32和Linux内核维护的页表项有所不同,所以维护了两套PTE. PGD存放在swapper_pd_dir中,一个PGD目录项其实包含了两份ARM32 PGD. 所以再分配PTE的时候,共分配了1024个PTE,5…
Linux内存管理 (3)内核内存的布局图
专题:Linux内存管理专题 关键词:内核内存布局图.lowmem线性映射区.kernel image.ZONE_NORMAL.ZONE_HIGHMEM.swapper_pg_dir.fixmap.vector.pkmap. 内核内存布局图对于理解内存管理至关重要,有了布局图对于理解内存管理初始化,以及虚拟内存,各种内存分配都有辅助作用. 所以可以用一张图来总领,然后逐个介绍每一段的来历,作用等等. 内核内存布局图和内存管理框架图是不同视角的内存管理框图,还包括后面介绍的用户空间内存布局图. 1…
Linux内存管理 (19)总结内存管理数据结构和API
专题:Linux内存管理专题 关键词:mm.vaddr.VMA.page.pfn.pte.paddr.pg_data.zone.mem_map[]. 1. 内存管理数据结构的关系图 在大部分Linux系统中,内存设备的初始化一般是在BIOS或bootloader中,然后把DDR的大小传递给Linux内核.因此从Linux内核角度来看DDR,其实就是一段物理内存空间. 1.1 由mm数据结构和虚拟地址vaddr找到对应的VMA extern struct vm_area_struct * find…
Linux内存管理 (23)一个内存Oops解析
专题:Linux内存管理专题 关键词:DataAbort.fsr.pte.backtrace.stack. 在内存相关实际应用中,内存异常访问是一种常见的问题. 本文结合异常T32栈回溯.Oops打印以及代码,分析打印log,加深对Oops的理解,有助于快速定位问题解决问题. 1. 不同类型异常处理 当内存访问异常时,触发__dabt_svc异常向量处理,进入do_DataAbort进行处理. 从_dabt_svc到do_DataAbort流程,可以参考do_DataAbort. 从do_D…
[转帖]Linux分页机制之分页机制的演变--Linux内存管理(七)
Linux分页机制之分页机制的演变--Linux内存管理(七) 2016年09月01日 20:01:31 JeanCheng 阅读数:4543 https://blog.csdn.net/gatieme/article/details/52402967 ~ 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gatieme https://blog.csdn.net/gatieme/article/details/52402967 日期 内…
[转帖]Linux分页机制之概述--Linux内存管理(六)
Linux分页机制之概述--Linux内存管理(六) 2016年09月01日 19:46:08 JeanCheng 阅读数:5491 标签: linuxkernel内存管理分页架构更多 个人分类: ┈┈[理解Linux内存管理] https://blog.csdn.net/gatieme/article/details/52402861 全系列 非常好 就是自己学习不会.. 版权声明:本文为博主原创文章 && 转载请著名出处 @ http://blog.csdn.net/gati…
linux内存管理-内核用户空间 【转】
转自:http://blog.chinaunix.net/uid-25909619-id-4491362.html 1,linux内存管理中几个重要的结构体和数组 page unsigned long flags 一组标志,也对页框所在的管理区进行编号 atomic_t _count 该页被引用的次数 atomic_t _mapcount 页框中页表项数目,如果没有则为-1 struct list_head lru 管理page忙碌/空闲链表(inactive_list/active_list)…
Linux内存管理 【转】
转自:http://blog.chinaunix.net/uid-25909619-id-4491368.html Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书…
Linux内存管理机制中buffer和cache的区别
Linux内存管理机制中buffer和cache的区别理解linux内存管理,需要深入了解linux内存的各个参数含义和规则,下面介绍一下Linux操作系统中内存buffer和cache的区别. Freefree 命令相对于top 提供了更简洁的查看系统内存使用情况: [root@blliu ~]# free -mt total used free shared buffers cachedMem: 3886…
linux内存管理---物理地址、线性地址、虚拟地址、逻辑地址之间的转换
linux内存管理---虚拟地址.逻辑地址.线性地址.物理地址的区别(一) 这篇文章中介绍了四个名词的概念,下面针对四个地址的转换进行分析 CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步(如下图): 首先,将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址, 其次,再利用其页式内存管理单元,转换为最终物理地址. 这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程.之所以这样冗余…
linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一)
分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 逻辑地址(Logical Address) 包含在机器语言指令中用来指定一个操作数或一条指令的地址(有点深奥).这种寻址方式在80x86著名的分段结构中表现得尤为具体,它促使windows程序员把程序分成若干段.每个逻辑地址都由一个段和偏移量组成,偏移量指明了从段开始的地方到实际地址之间的距离. 线性地址(…
Linux内存管理机制简析
Linux内存管理机制简析 本文对Linux内存管理机制做一个简单的分析,试图让你快速理解Linux一些内存管理的概念并有效的利用一些管理方法. NUMA Linux 2.6开始支持NUMA( Non-Uniform Memory Access )内存管理模式.在多个CPU的系统中,内存按CPU划分为不同的Node,每个CPU挂一个Node,其访问本地Node比访问其他CPU上的Node速度要快很多. 通过numactl -H查看NUMA硬件信息,可以看到2个node的大小和对应的CPU核,以及…
转 Linux内存管理原理
Linux内存管理原理 在用户态,内核态逻辑地址专指下文说的线性偏移前的地址Linux内核虚拟3.伙伴算法和slab分配器 16个页面RAM因为最大连续内存大小为16个页面 页面最多16个页面,所以16/2order(0)bimap有8个bit位两个页框page1 与page2组成与两个页框page3 与page4组成,这两个块之间有一个bit位 order(1)bimap有4个bit位order(2)bimap有4个bit位的2个页面分配过程 当我们需要order(1)的空闲页面块时,orde…
Linux内存管理【转】
转自:http://www.cnblogs.com/wuchanming/p/4360264.html 转载:http://www.kerneltravel.net/journal/v/mem.htm Linux内存管理 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理…
linux内存管理之uboot第一步
在进入讲解linux内存管理的kernel阶段以前,了解一下uboot阶段是如何准备好内存物理设备的,这是非常有意义的.通常进入到linux内核阶段之后,对内存芯片的物理特性寄存器访问是比较少的,强调的是linux在管理上的用法,而大部分必要工作由uboot阶段进行处理,如打开内存功能,配置内存,初始化内存设备,获得内存基本信息等. 下面以笔记的形式讲述调试uboot内存的方法,分别以ARM芯片和MIPS芯片为基础进行,大家可以将其作为bringup板子时的参考. 一 分类:内存与C…
linux内存管理之全局框架
讲解复杂繁琐的机制原理,最通俗的方法就是用模型架构的方式向读者呈现,先要在整体上了解大方向大架构,再根据大方向大架构来进行分支深入,犹如毛主席那句话“战略上蔑视敌人,战术上重视敌人”.下面我也以这种方式把各个大模型方式向大家画出,并作出简略解述. 一. 地址划分. 1. CPU地址. CPU地址是指CPU的地址总线能寻址的范围,32bit-CPU寻址范围为4G, 这个地址是虚拟的,实际上外部物理内存是不会使用这么大的内存. CPU虚拟地址的4G空间,通常划分为两部分,一部分为内核虚拟地址,通常…
Linux内存描述之高端内存–Linux内存管理(五)
服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers Linux内存管理 http://blog.csdn.net/vanbreaker/article/details/7579941 #1 前景回顾 前面我们讲到服务器体系(SMP, NUMA, MPP)与共享存储器架构(UMA和NUMA) #1.1 UMA和NUMA两种模型 共享存储型多处理机有两种模型…
Linux内存描述之内存区域zone–Linux内存管理(三)
服务器体系与共享存储器架构 日期 内核版本 架构 作者 GitHub CSDN 2016-06-14 Linux-4.7 X86 & arm gatieme LinuxDeviceDrivers Linux内存管理 #1 前景回顾 前面我们讲到服务器体系(SMP, NUMA, MPP)与共享存储器架构(UMA和NUMA) #1.1 UMA和NUMA两种模型 共享存储型多处理机有两种模型 均匀存储器存取(Uniform-Memory-Access,简称UMA)模型 非均匀存储器存取(Nonunif…
Linux内存管理(最透彻的一篇)【转】
转自:https://www.cnblogs.com/ralap7/p/9184773.html 摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法.力求从外到内.水到渠成地引导网友分析Linux的内存管理与使用.在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理. 前言 内存管理一向是所有操作系统书籍不惜笔墨重点讨论的内容,无论市面上或…