ACM博弈问题小试】的更多相关文章

题目: 取石子(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:2   描述 一天,TT在寝室闲着无聊,和同寝的人玩起了取石子游戏,而由于条件有限,他/她们是用旺仔小馒头当作石子.游戏的规则是这样的.设有一堆石子,数量为N(1<=N<=1000000),两个人轮番取出其中的若干个,每次最多取M个(1<=M<=1000000),最先把石子取完者胜利.我们知道,TT和他/她的室友都十分的聪明,那么如果是TT先取,他/她会取得游戏的胜利么?   输入 第一行是一…
博弈知识汇总 转自:http://www.cnblogs.com/kuangbin/archive/2011/08/28/2156426.html 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理.下面我们来分析一下要如何才能够取胜. (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.…
博弈知识汇总 有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可.两个人轮流从堆中取物体若干,规定最后取光物体者取胜.这是我国民间很古老的一个游戏,别看这游戏极其简单,却蕴含着深刻的数学原理.下面我们来分析一下要如何才能够取胜. (一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个.最后取光者得胜. 显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取…
第一弹: Moscow Pre-Finals Workshop 2016 - Kent Nikaido Contest 1 Problem K. Pyramid Game http://opentrains.snarknews.info/~ejudge/team.cgi?SID=afa73761fd0d61ae&action=2&lt=1 题意: N堆石头,两个人轮流取.有2种操作:一是选择一堆石头拿走一个,二是从每堆石头拿走一个,但是只有当所有堆都非零的时候才能用第二种操作. 谁不能操作…
第二弹: 套路&&经验总结: 1. N堆***的游戏,一般可以打表找SG函数的规律.比如CodeForces 603C 2.看起来是单轮的游戏,实际上可能拆分成一些独立的子游戏.比如CodeForces 317D 3.考虑最终如果某方胜利,最后的局面会是怎样. 比如CodeForces 594A 4.大力分类讨论,不要怕麻烦,在纸上写清楚. 比如 CodeForces 455B CodeForces 794C 题目大意: A和B各有一个大小为N的可重复字符集合,然后两个人轮流,每次取出从自…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所有xor和为0. 那么自然变成了n个数里面取出一些数,使得xor和为0,求取法数. 首先由xor高斯消元得到一组向量基,但是这些向量基是无法表示0的. 所以要表示0,必须有若干0来表示,所以n-row就是消元结束后0的个数,那么2^(n-row)就是能组成0的种数. 对n==row特判一下. 代码:…
 NBUT 1107  盒子游戏 Time Limit:1000MS     Memory Limit:65535KB     64bit IO Format:  Practice  Appoint description:  System Crawler  (Aug 13, 2016 10:35:29 PM) Description 有两个相同的盒子,其中一个装了n个球,另一个装了一个球.Alice和Bob发明了一个游戏,规则如下:Alice和Bob轮流操作,Alice先操作每次操作时,游戏者…
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round8-H.html 题目传送门 - https://www.nowcoder.com/acm/contest/146/H 题意 有 $n$ 堆石子,第 $i$ 堆有 $a_i$ 个.请你取出尽量多堆石子,使得取石子nim游戏后手必胜.输出你选择的石子堆数. $n,a_i\leq 5\times 10^5$ 题解 首先我们把题转化成:在 $n$ 个数中选择尽量多的…
题目链接:http://codeforces.com/gym/101350/problem/E 题目大意:给你一个长度为n的方格,方格上面都被染色成了白色.每次染色都是选择白色的,假设目前选择的这块白色(白色联通块)的长度为L,每次都只能选择<=(L+1)/2的素数染色.问谁赢? 思路:果然博弈不会啊,感谢这位神牛:链接 当n=2||n=3先手必败 其余的n必胜,n=1就不解释了.当n>=4的时候,如果是奇数,那么每次都取出中间两个,如果是偶数,每次都取出中间三个,然后对称取即可. //看看会…
前些日子我打算开了博弈基础,事后想进行总结下 一句话就是分析必胜或必败,异或为0. 以下内容来自转载: Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源自中国,经由被贩卖到美洲的奴工们外传.辛苦的工人们,在工作闲暇之余,用石头玩游戏以排遣寂寞.后来流传到高级人士,则用便士(Pennies),在酒吧柜台上玩.最有名的玩法,是把十二枚便士放成3.4.…