gcd 最小公约数】的更多相关文章

int gcd(int a, int b) { ? a : gcd(b, a % b); }…
这个函数是我无意中看到的很不错,很给力,我喜欢 是用于求最小公约数的 简单的描述就是,记gcd(a,b)表示非负整数a,b的最大公因数,那么:gcd(a,b)=gcd(b,a%b)或者gcd(a,0)=gcd(0,a)=a 请看代码 int gcd(int a,int b){ if(a==0) return b; if(b==0) return a; return gcd(b,a%b);} 例题 链接 http://acm.hdu.edu.cn/showproblem.php?pid=1108…
求最小公约数,最easy想到的是欧几里得算法,这个算法也是比較easy理解的,效率也是非常不错的. 也叫做辗转相除法. 对随意两个数a.b(a>b).d=gcd(a.b),假设b不为零.那么gcd(a,b)=gcd(b.a%b) 证明: 令 r=a%b,即存在k,使得 a=b*k+r,那么r=a-b*k:显然r>=0,  r%d=((a%d)-(b*k)%d)%d.由于a%d=b%d=0,所以r%d=0: 因此求gcd(a,b)能够转移到求gcd(b,a%b).那么这就是个递归过程了.那什么时…
题目:https://www.luogu.org/problemnew/show/P1029 题意: 给定两个数$x$和$y$,问能找到多少对数$P$$Q$,使得他们的最小公约数是$x$最大公倍数是$y$ 思路: 我们知道两个数的最小公倍数是他们的乘积除以最大公约数. 也就是说我们可以把$P,Q$表示成 $P = k_1x, Q = k_2x, y = \frac{PQ}{x}$ 即$k_{1}k_{2}x = y$,且$k_1,k_2$互质 那么我们只用在$\frac{x}{y}$中找到有多少…
Greatest Common Divisor 题目链接 题目描述 There is an array of length n, containing only positive numbers. Now you can add all numbers by 1 many times. Please find out the minimum times you need to perform to obtain an array whose greatest common divisor(gcd…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数.其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a = kb +r 因此d也是(a,b)的公约数 因此(a,b…
又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 18480    Accepted Submission(s): 7708 Problem Description 有三个正整数a,b,c(0<a,b,c<10^6),其中c不等于b.若a和c的最大公约数为b,现已知a和b,求满足条件的最小的c.   Input 第一行输入一…
方法一:辗转相除法(欧几里得 Euclidean) 用“较大数”除以“较小数”,再用较小数除以第一余数,再用第一余数除以第二余数: 反复直到余数为零为止. #include<iostream> #include<algorithm> using namespace std; /*其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,…
题目 给你两个正整数a和b, 输出它们的最大公约数 辗转相除法 辗转相除法的步骤 def gcd(b,a): b,a=a,b%a if a==0: return b else: return gcd(b,a) 即就是取假设b与a不能整除,就取a和b除以a的余数再考察是个递归的思路. 理解 能够从两个角度去理解辗转相除法 1.举例法 一张长方形纸,长2703厘米.宽1113厘米.要把它截成若干个相同大小的正方形,纸张不能有剩余且正方形的边长要尽可能大.问:这样的正方形的边长是多少厘米? 解答: 可…
说明: 最初跟鹏哥学习最大公约数的算法是辗转相除,确实印象很深刻,那种辗转赋值的思想在好多题目中都有运用,但随着进一步学习,我也参考了其他几种方便快捷的最大公约数求法,在这里做一个总结. . int gcd(int a,int b) ///基础 辗转 { int r; ) { r=a%b; a=b; b=r; } return a; } . int gcd(int a,int b)///位运算 { while(b^=a^=b^=a%=b); return a; } . #include<algo…