1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开始集合为空.然后有一种操作每次向集合中加入一个数字或者删除一个数字.每次操作给出一个下标x(1 ≤ x ≤ n),如果a[x]已经在集合中,那么就删除a[x],否则就加入a[x]. 问每次操作之后集合中互质的数字有多少对. 注意,集合中可以有重复的数字,两个数字不同当且仅当他们的下标不同. 比如a[…
题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd(a_1,a_2,a_3…a_n)=d$,显然每个$a_i$的倍数都满足,有$\frac{a_i}{d}$种方案 那么一个d对答案的贡献为\[\prod_{i=1}^{min(a)}{\lfloor\frac{a_i}{d}\rfloor}    \] 但是所有的d计入会有重复情况,考虑容斥,对d进行素数分…
莫比乌斯值+容斥+二分 /** 题目:bzoj2440 完全平方数 链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2440 题意:求第k个小x数.小x数是指不存在某个素因子次数>=2.1也是小x数. 思路:二分x,求[1,x]有多少个小x数.如果一个数是某个素数的平方的倍数,那么不是小x数. 所以要减去.2^2的倍数, 3^2的倍数, 5^2的倍数. 由于减去2的平方的倍数和3的平方的倍数把6的平方的倍数多减去了一次.所以要加回去. ans…
有n个数字,a11,a22,…,ann.有一个集合,刚开始集合为空.然后有一种操作每次向集合中加入一个数字或者删除一个数字.每次操作给出一个下标x(1 ≤ x ≤ n),如果axx已经在集合中,那么就删除axx,否则就加入axx. 问每次操作之后集合中互质的数字有多少对. 注意,集合中可以有重复的数字,两个数字不同当且仅当他们的下标不同. 比如a11=a22=1.那么经过两次操作1,2之后,集合之后存在两个1,里面有一对互质. Input单组测试数据. 第一行包含两个整数n 和 q (1 ≤ n…
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - m    1 - n 中找互质的对数,容斥 求一下即可 #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn 123456 bool vis[maxn+10]; ll t,n,m,prime[m…
题意: 求1 - s 中 找出k个数 使它们的gcd  > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数  求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模板就好了 容斥函数为 mu[i] * -1 #include <iostream> #include <cstdio> #include <sstream> #include <cstring> #include <map> #include <…
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先是把下界作为1.可以化为求 \[\sum_{i=1}^{\lfloor\frac{N}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{M}{k}\rfloor}[(i,j)=1]\] 说明:大概就我不能直接看出来了.. 首先要求\([1,N]\)中有多少\(i,i|k\),再…
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\leq m)\)的对数.则\(ans = F(b,d,k)-F(a-1,d,k)-F(c-1,b,k)+F(a-1,c-1,k)\) 预处理莫比乌斯函数的前缀和,分块加速求和即可 #include<bits/stdc++.h> using namespace std; typedef long lon…
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Status][Discuss] Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是小X的生日,小 W 想送一个数给他作为生日礼物.当然他不能送一个小X讨厌…
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000). 是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界. 设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$ 根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1). 对于f(n,m)的求解: $f(n,m)=\sum_{i=1}^{n}\…