一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[n]=Σ(0≤k<n)c[k]c[n-k-1],边界条件为c[0]=1; 其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合: 根据组合公式我们可以化简得c[n]=2n(2n-1).....(n+2)/n!; (2)另类递推式 c[n]=c[n-1](4n-2)…
作者:阿凡卢 出处:http://www.cnblogs.com/luxiaoxun/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利. 卡特兰数 catalan number 卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 12964479…
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为(OEIS中的数列A000108):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190…
卡特兰数的英文维基讲得非常全面,强烈建议阅读! Catalan number - Wikipedia (本文中图片也来源于这个页面) 由于本人太菜,这里只选取其中两个公式进行总结. (似乎就是这两个比较常用?) 首先先扔卡特兰数的定义式 \[Catalan_n=\prod_{i=1}^{n-1}Catalan_i*Catalan_{n-i}\] (卡特兰数的很多应用,比如二叉树形态数,出栈序列数等,都由这个定义式得到.详见英文维基) 公式1 (通项公式) : \[Catalan_n=\frac{…
一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 3.给定一个n个节点的二叉树,求二叉树有多少种(这里定义不同指树的形态不同) 这三个问题都有关catalan数 事实上关于Catalan的性质有关问题很多,这里只是比较针对的列出了几种. 二.求解问题1 稍微想一想及可以知道,问题1,2同构,问题3却好像不一样. 我们以问题1为例,推出卡特兰数的计算…
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 它的左.右子树也分别为二叉排序树. 举个栗子,给定 n = 3, 共有 5 个. 1 3 3 2 1 \ / / / \ \ 3 2 1…
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1)  编辑 收藏 引用 所属分类: ACM ( 数论 ) .ACM_资料 .ACM ( 组合 ) 维基百科资料: 卡塔兰数 卡塔兰数是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项公式为                       另类递归式:  h(n)=((4*…
浅谈Eclipse调用Tomcat服务的原理 转:http://www.thinksaas.cn/group/topic/341645/ 转:http://www.173it.cn/Html/?5815.html 首先,在Eclipse中新建一个Hello工程,Workspace的位置在c:eclipseworkspace,所以hello工程的位置就是在%Workspace%hello这个文件夹中. 然后在hello工程中添加一个hello.jsp或者index.jsp都可以(index.jsp…
Catalan 原理: 令h(0)=1,h(1)=1,catalan 数满足递归式: (其中n>=2) 另类递推公式: 该递推关系的解为: (n=1,2,3,...) 卡特兰数的应用实质上都是递归等式的应用 前几项为:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120…
一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2).也就是说,如果能把公式化成上面这种形式的数,就是卡特兰数. 组合公式 Cn = C(2n,n) / (n+1) (化简前 h(n) = c(2n,n)-c(2n,n+1) (n=0,1,2,...) 证明) 递归公式1 h(n) = h(n-1)*(4*n-2) / (n+1) 递归公式2 h(n)…