问题描述 对于一个图\(G(V,E)\),当点对集\(S\)满足任意\((u,v)\in S\),均有\(u,v\in V,(u,v)\in E\),且\(S\)中没有点重复出现,我们称\(S\)为\(G\)的一个匹配,当且仅当\(|S|\)最大时,称\(S\)为\(G\)的最大匹配 那么要如何求解一个图的最大匹配呢? 特殊图上? 首先考虑特殊图的最大匹配问题,也就是很经典的二分图最大匹配,这个问题可以用匈牙利算法解决,这里就不再赘述具体的实现等细节问题,我们只回顾一下这个算法的核心思…