近似推断(Approximate Inference)】的更多相关文章

1.变分推断(Variational Inference) 1.1.分解概率分布(Factorized distributions) 1.2.分解近似的性质(Properties of factorized approximations) 1.3.例子:一元高斯分布(Example: The univariate Gaussian) 1.4.模型比较(Model comparition) 2.例子:高斯的变分混合(Illustration Variational Mixture of Gauss…
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可能接近的分布(或者类似分布的表示) 预备知识 学习变分推断需要以下预备知识 多元分布: 边际化(Marginalization)是我们使用变分推断时最常使用的操作 KL散度: KL散度是变分目标函数的一部分.…
图模型(Graphical Models)是一个用来表示概率模型的工具.所谓概率模型,也就是在刻画一组随机变量之间的相互关系.图模型就是用来显式地刻画这些变量之间关系的.在 图模型中,每个变量由图中的一个结点表示,而每一条边则代表其所连接的两个变量之间有相互依赖关系.根据图的结构可以方便地判断变量之间的独立性.条件独 立性等关系,并且可以指导我们做一些inference的工作.   图模型有两种,用无向图表示的称为马尔可夫随机场(Markov Random Field,MRF),有向图表示的称为…
1. 建模 对原始信号 X 进行观测,观测可以抽象为(离散:PY|X(y|x), 连续:fY|X(y|x)),物理世界噪声的存在,将导致观测到的 X 出现一定的噪声,记为 Y: X⇒fY|X(y|x)⇒Y 对于推断(inference)问题而言,我们更多的是考虑如何从 Y 获取原始的无噪信号 X: Y⇒fX|Y(y|x)⇒X 注意,原始信号 X 离散的,并不意味着其观测值也是离散的: {X=0,1Y=X+W 而 W 是高斯噪声.这种由离散信号因为高斯噪声(连续概率分布)的存在而最终得到连续的观察…
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望.或者计算边缘概率分布.条件概率分布等等. 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后验分布下的期望.这些任务往往需要积分或求和操作. 但在很多情况下,计算这些东西往往不那么容易.因为首先,我们积分中涉及的分布可能有很复杂的形式,这样就无法直接得到解析解,而我们当然希望分布是类似指数族分布这样具有共轭分…
引入 统计推断的核心任务,是观察到一些X(可见变量戒可观察变量)之后计算隐变量Z的后验分布p(Z|X),以及在这个后验分布下计算我们所需要的函数的期望.比如,讲EM时,我们曾计算过对数似然函数在隐变量后验分布下的期望(公式9.30),作为EM中的E步. 但我们都知道,求期望要用到求和戒积分运算,很多情况下,计算它们往往不那么简单. 首先,我们积分所涉及的分布可能很复杂,不像混合高斯做EM时每步迭代都有解析解:其次,我们要积分的变量空间可能维度很高,这样就把我们做数值积分的路给堵死了.因为这两个原…
1.  Approximation    Probabilistic model  中的一个 central task :给定一组observation X 后,计算latent variables Z 的后验概率P( Z | X).以及一些expectation with respect to P(Z| X).很多情况下P( Z | X)是analytically  intractable 的.这就需要有approximation 方法.    Latent variable :只要没有观察到…
上二年级的大儿子一直在喝无乳糖牛奶,最近让他尝试喝正常牛奶,看看反应如何.三天过后,儿子说,好像没反应,我可不可以说我不对乳糖敏感了. 我说,呃,这个问题不简单啊.你知道吗,这在统计学上叫推断. 儿子很好学,居然叫我解释什么叫推断.   好吧,那我就来卖弄一下.   老早之前,听机器学习的一个podcast,是总结前一年机器学习领域发生什么事情,最后一段P主说: 我们已经总结了这一年,那我们来预测(predict)一下明年吧,不过我觉得说predict不是那么准确,应该是做一下inference…
[综述](MIT博士)林达华老师-"概率模型与计算机视觉” 距上一次邀请中国科学院的樊彬老师为我们撰写图像特征描述符方面的综述(http://www.sigvc.org/bbs/thread-165-1-1.html)之后,这次我们荣幸地邀请到美国麻省理工学院(MIT)博士林达华老师为我们撰写“概率模型与计算机视觉”的最新综述.这次我们特别增设了一个问答环节,林老师针对论坛师生提出的许多问题(如概率图模型与目前很热的深度神经网络的联系和区别)一一做了详细解答,并附在综述的后面. 林达华老师博士毕…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
声明:本文转载自http://www.sigvc.org/bbs/thread-728-1-1.html,个人感觉是很好的PGM理论综述,高屋建瓴的总结了PGM的主要分支和发展趋势,特收藏于此. “概率模型与计算机视觉”林达华美国麻省理工学院(MIT)博士   上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project: “link a camera to a computer and get the c…
推断(Inference),就是深度学习把从训练中学习到的能力应用到工作中去. 精心调整权值之后的神经网络基本上就是个笨重.巨大的数据库.为了充分利用训练的结果,完成现实社会的任务,我们需要的是一个能够保留学习到的能力,还能迅速应用到前所未见的数据上的,响应迅速的系统.这就是推断,根据真实世界中的少量数据,迅速地提供正确的答案. 这可是计算机科学的全新领域.现在主要有两种方法来优化庞大笨拙的神经网络,以实现高速低延迟的应用. 第一个方法,是查找神经网络中经过训练后并没有用到.也就是说尚未激活的部…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然. 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训练集的对数边际似然L(D; θ),可以估计出最优的参数θ∗.然而计算边际似然函数时涉及p(x) 的推断问题,需要在对数函数的内部进行求和(或积分) 注意到,对数边际似然log p(x; θ) 可以分解为 其中DKL(q(z)∥p(z|x; θ))为分布q(z)和后验分布p(z|x; θ)的KL散度. 由于DKL(q(…
独立(Independence) 统计独立(Statistical Independence) 两个随机变量X,Y统计独立的条件是当且仅当其联合概率分布等于边际概率分布之积: \[ X \perp Y \leftrightarrow P(X,Y)=P(Y) P(Y) \] 思考:假设 \(X \perp Y\),\(Y \perp Z\),那么 \(X\) 和 \(Y\) 有没有独立关系呢? 举例:爸吃饭,奥巴马吃饭,妈吃饭 条件独立(Conditional Independence) 两个随机…
这部分开始,我们将讨论 learning 相关的内容.PGM 为 frequentist 与 Bayesian 系的 model 提供了同一种语言,对前者来说 learning 就是确定一种对“未知但是却是常值”的参数的估计,使得某种“准则”得到满足:对后者来说参数不存在“估计”问题,参数由于成为了随机变量,也成为了 PGM 的一部分,这使得后者的参数推断变成了一般的 inference 问题,事实上个人觉得后者的 learning 其实是对 hyper-parameter 的 tuning,因…
原文:http://dongguo.me/blog/2014/01/01/expectation-propagation/ 简介 第一次接触EP是10年在百度实习时,当时组里面正有计划把线上的CTR预估模型改成支持增量更新的版本,读到了微软一篇基于baysian的CTR预估模型的文章(见推荐阅读5),文章中没有给出推导的细节,自己也没有继续研究.今年在PRML中读Approximal inference这章对EP有了一些了解,同时参考了其它相关的一些资料,在这里和大家探讨. 什么是期望传播 期望…
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自…
目录 Node Classification Probabilistic Relational Classifier Iterative Classification Belief Propagation 转自本人:https://blog.csdn.net/New2World/article/details/105410276 前面几课时讲的主要是图的性质.一些基本结构和针对结构的算法.而从现在开始就要涉及到具体的 learning 任务了.这一讲要解决的主要问题是:给定一个网络以及网络里一部…
模块1 1. 研究背景 随着互联网的发展,社交网络逐渐复杂化.多元化.在一个社交网络中,充斥着不同类型的用户,用户间产生各式各样的互动联系,形成大小不一的社群.为了对社交网络进行研究分析,需要将网络中的节点(用户)进行分类. 2. 问题描述 给定一个社交网络,以图$G_L=(V,E,X,Y)$的形式表示,其中$X \in \mathbb{R}^{|V| \times S}$ ($S$是每个属性节点的特征空间大小),$Y \in \mathbb{R}^{|V| \times |Y|}$ ($Y$是…
复习: 1.概率密度函数,密度函数,概率分布函数和累计分布函数 概率密度函数一般以大写“PDF”(Probability Density Function),也称概率分布函数,有的时候又简称概率分布函数. 而累计分布函数是概率分布函数的积分. 注意区分 从数学上看,累计分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率.这个意义很容易理解. 概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率.如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”. l“机器学习是对能通过经验自动改进的计算机算法的研究”. l“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said t…
读书会成立属于偶然,一次群里无聊到极点,有人说Pattern Recognition And Machine Learning这本书不错,加之有好友之前推荐过,便发了封群邮件组织这个读书会,采用轮流讲课的方式,如果任务能分配下去就把读书会当作群员的福利开始进行,分配不下去就算了.后来我的几位好友:网神兄.戴玮博士.张巍博士.planktonli老师.常象宇博士纷纷出来支持这个读书会.待任务分配完,设置好主持人和机动队员,我认为就不需要再参与了,但进行不久,也充当机动队员讲了第二.六.九.十一章,…
向量定义:x1 = c(1,2,3); x2 = c(1:100) 类型显示:mode(x1) 向量长度:length(x2) 向量元素显示:x1[c(1,2,3)] 多维向量:multi-dimensional vector:rbind(x1,x2); cbind(x1,x2) > x = c(1,2,3,4,5,6) > y = c(6,5,4,3,2,1) > z = rbind(x,y) > z [,1] [,2] [,3] [,4] [,5] [,6] x 1 2 3 4…
典型的浅层学习结构: 传统隐马尔可夫模型(HMM).条件随机场 (CRFs).最大熵模型(Maxent).支持向量机(SVM).核回归及仅含单隐层的多层感知器(MLP)等. 局部表示,分布式表示和稀疏表示:局部表示聚类算法,最近邻算法的输入空间切割局部之间互斥,分布式表达ICA.PCA和RBM,器所使用的特征较少,PCA和ICA能获取主要分量信息,但输出信号数目小于输入信号数目,不能很好地解决欠定问题. Learning multiple layers of representation  Ge…
什么是模式识别(Pattern Recognition)? 按照Bishop的定义,模式识别就是用机器学习的算法从数据中挖掘出有用的pattern. 人们很早就开始学习如何从大量的数据中发现隐藏在背后的pattern.例如,16世纪的Kepler从他的老师Tycho搜集的大量有关于行星运动的数据中发现了天体运行的规律,并直接导致了牛顿经典力学的诞生.然而,这种依赖于人类经验的.启发式的模式识别过程很难复制到其他的领域中.例如手写数字的识别.这就需要机器学习的技术了.(顺便提一下,开普勒定律在物理…
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数发生改变时,该层的输入分布也会发生改变,也就是存在内部协变量偏移问题(Internal Covariate Shift),从而造成神经层的梯度消失,模型收敛过慢的问题. Batch Normalization(BN,批量标准化)就是一种解决内部协变量偏移问题的方法,它通过对神经网络的中间层进行逐层归…
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(probabilistic model)提供了一种描述框架,将学习任务归结于计算未知变量的概率分布,而不是直接得到一个确定性的结果. 在概率模型中,利用已知变量推测未知变量的分布称为“推断(inference)”,其核心是如何基于可观测变量推测出未知变量的条件分布. 具体来说,假定所关心的变量集合为…
这部分讨论在有数据缺失情况下的 learning 问题,这里仍然假定了图结构是已知的. 首先需要讨论的是为什么会缺失,很多情况下缺失并不是“随机”的:有的缺失是人为的,那么某些情况下缺失的可以直接补上,而某些情况下我们需要使用额外的随机变量对缺失进行 modeling:有的缺失是随机的,有的是因为的确存在“解释”或者人为赋予了随机性(如 Bayesian 里面对参数假定了分布),这些时候我们会引入所谓的隐变量.这种情况下,我们 learning 的目标是最大化观测到的的数据的 likelihoo…
和 Koller 的 video 最大的不同莫过于书上讲 LBP 的角度不是 procedural 的,而是原理性的.我们先看个 procedural 的,在一般的 cluster graph 上的 BP 改进版即 loopy belief propagation 先将所有的 message 初始化为 1,然后依照原先的策略进行消息传递,直到收敛为止.这里面收敛很可能不是所有的消息都能收敛,同时传递消息的顺序一般比较 tricky,过去认为有效的同步传递方式已经被搞清楚很多情况下不能收敛到合理的…