Semi-Supervised Dimensionality Reduction】的更多相关文章

many Machine Learning problems involve thousands or even millions of features for each training instance. not only does this make training extremely slow,it can also make it much harder to find a good solution. this problem is often referred to as th…
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analysis, 经常用于加快学习算法,同时对于数据可视化以帮助你对数据的理解也有很大的帮助. Unsupervised learning Introduction supervised learning:在前面几课我们学习的都是属于监督性学习的内容,包括回归和分类,主要特点就是我们使用的数据集都是类似(x…
10. Dimensionality Reduction Content  10. Dimensionality Reduction 10.1 Motivation 10.1.1 Motivation one: Data Compression 10.2.2 Motivation two: Visualization 10.2 Principal Component Analysis 10.2.1 Problem formulation 10.2.2 Principal Component An…
At some fundamental level, no one understands machine learning. It isn’t a matter of things being too complicated. Almost everything we do is fundamentally very simple. Unfortunately, an innate human handicap interferes with us understanding these si…
多因子降维法(MDR,Multifactor Dimensionality Reduction ) MDR是近年统计学中发展起来的一种新的分析方法.其中,“因子” 即交互作用研究中的变量,“维” 是指研究中多因子组合的个数.该方法主要应用于卫生统计学,流行病学及遗传学中,它以疾病易感性分类的方式建模,研究基因—基因.基因一环境之间交互作用.它弥补了Logistic回归在处理高阶交互作用时的局限性.在高血压.糖尿病.心血管疾病和恶性肿瘤等常见的复杂疾病中已有广泛而成功应用. 此外,2007年Lou…
2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component analysis (PCA) 4.4. Unsupervised dimensionality reduction 4.4.1. PCA: principal component analysis PCA+ICA 解混过程:https://www.zhihu.com/question/28845451…
http://blog.csdn.net/pipisorry/article/details/49231919 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之降维Dimensionality Reduction {博客内容:推荐系统有一种推荐称作隐语义模型(LFM, latent factor model)推荐,这种推荐将在下一篇博客中讲到.这篇博客主要讲隐语义模型…
机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了. 降维会丢失一些信息(比如将图片压缩成jpeg格式会降低质量),所以尽管会提速,但可能使模型稍微变差.因此首先要使用原始数据进行训练.如果速度实在太慢,再考虑降维. 8.1 维数灾难(The Curse of Dimensionality) 我们生活在三维空间,连四维空间都无法直观理解,更别说更高…
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:三十五(用NN实现数据降维练习) Deep learning:三十四(用NN实现数据的降维) Deep learning:三十三(ICA模型) Deep learning:三十二(基础知识_3) Deep learning:三十一(数据预处理练习) Deep learning:三十(关于数据预处理的相关技巧) Deep…
个人的一些碎碎念: 聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kmean进行粗聚类.(10x就是先做PCA,再用kmeans聚类的) 鉴于单细胞的教程很多,也有不下于10种针对单细胞的聚类方法了. 降维往往是和聚类在一起的,所以似乎有点难以区分. PCA到底是降维.聚类还是可视化的方法,t-SNE呢? 其实稍微思考一下,PCA.t-SNE还有下面的diffusion…