P2613 【模板】有理数取余】的更多相关文章

刷水题. 传送门 看似高精而非高精乃是此题最大亮点. 边读边取模技能get~ #include<cstdio> #define ll long long #define mod 19260817 ll read() { ll ret=;char c=getchar(); ')c=getchar(); *ret+c-')%mod,c=getchar(); return ret; } ll ksm(ll b,int p) { ll ret=; while(p) { )ret=(ret*b)%mod…
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba​,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数aa.第二行,一个整数bb. 输出格式: 一个整数,代表求余后的结果.如果无解,输出Angry! 输入输出样例 输入样例#1: 复制 233 666 输出样例#1: 复制 18595654 说明 对于所有数据,0\leq a,b \leq 10^{10001}0≤a,b≤10100…
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817=a\times b^{19620815}\mod 19620817$ 除法转化为了乘法,同余的性质... 求一个逆元即可,根据费马小定理,由于$19620817$是一个质数 #include<bits/stdc++.h> #define LL long long using namespace…
题目 P2613 [模板]有理数取余 解析 简单的数论题 发现并没有对小数取余这一说,所以我们把原式化一下, \[(c=\frac{a}{b})\equiv a\times b^{-1}(mod\ p)\] 因为\(p\)是质数,所以我们根据费马小定理\(b^{p-1}\equiv 1(mod p)\), 有\(a\times b^{-1}\times 1 \equiv c(mod\ p)\), \(=>a\times b^{-1}\times b^{p-1} \equiv c(mod\ p)\…
题目链接 我们先看这个式子: $c=\dfrac{a}{b}$ $ $ $ $ $mod$ $ $ $ $ $19260817$ 某正常高中生:这$……$ --- 对于这个 $c$ . 显然,它很可能是小数. 那么, $double$ 的取余你老师讲过么$?!!!$ 所以,我们要~~化简~~魔改一下这个式子. --- $$c=\dfrac{a}{b}=a*b^{-1}$$ 又因为是 $mod$ $ $ $p=19260817$ 的意义下的计算. 所以,现在就有了一种化小数为整数的方法:  乘法逆…
原题链接 https://www.luogu.org/problemnew/show/P2613 在这里虽然是讲洛谷的题解,但用到的数论知识,归并到数论里也不为过! 进入正题: 首先看到题面:给出一个有理数c=a/b,求c mod 19260817的值. 看一下数据范围 我滴天!!!又要写高精???GG无疑!!! 咦,既然要取余,还做乘法运算,那只要写个快读在读入时取膜不就好啦,这样就爆不了long long 了. 有理数求余???搞笑呢,不是只有整数求余嘛? 我们知道有理数包含整数和分数,那么…
题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整数 \( b \) . 输出格式: 一个整数,代表求余后的结果.如果无解,输出Angry! 说明 对于所有数据,\(  0\leq a,b \leq 10^{10001},0≤a,b≤1010001 \) 很平常的一道膜板题,求解除法取模需要利用乘法逆元的知识 直接扩展欧几里得算法求解逆元 至于数据…
题目描述 给出一个有理数 $c=\frac{a}{b}$ ,求 c mod 19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 aa .第二行,一个整数 bb . 输出格式: 一个整数,代表求余后的结果.如果无解,输出Angry! 输入输出样例 输入样例#1: 233 666 输出样例#1: 18595654 说明 对于所有数据, 0≤a,b≤1010001 Solution: 本题太板子,不多讲. 读入时处理一下$a,b$,先取模一下,然后直接扩欧或者费马小定理搞…
题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美滋滋 再一看数据 我天 可怕 10^10001 一看 完了 要打高精 (但我打高精肯定GG啊 一想 根据同余好像可做(前面的大佬讲过了我就不赘述了 哦 对了 还有费马小定理: a^phi(p)≡1(mod p) (只对于p是质数的情况哦 然后对于快读 略做修改就可以了 ---------------…
题目链接 \(Click\) \(Here\) 真心没啥东西,只要能\(Get\)到在数字输入的时候按位取模,以及除数也可以直接取模就可以了.(把每个数看做乘法原理和加法原理构造起来的即可.) #include <bits/stdc++.h> using namespace std; const int Mod = 19260817; int read_Mod () { int s = 0, ch = getchar (); while ('9' < ch || ch < '0')…