Spark SQL怎么创建编程创建DataFrame】的更多相关文章

创建DataFrame在Spark SQL中,开发者可以非常便捷地将各种内.外部的单机.分布式数据转换为DataFrame.以下Python示例代码充分体现了Spark SQL 1.3.0中DataFrame数据源的丰富多样和简单易用: # 从Hive中的users表构造DataFrame users = sqlContext.table("users") # 加载S3上的JSON文件 logs = sqlContext.load("s3n://path/to/data.js…
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1.people.txt:soyo8, 35小周, 30小华, 19soyo,88 /** * Created by soyo on 17-10-10. * 使用编程方式定义RDD模式 */ import org.apache.spark.sql.types._ import org.apache.sp…
1.people.txtsoyo8, 35小周, 30小华, 19soyo,882./** * Created by soyo on 17-10-10. * 利用反射机制推断RDD模式 */import org.apache.spark.sql.catalyst.encoders.ExpressionEncoderimport org.apache.spark.sql.{Encoder, SparkSession}import org.apache.spark.sql.SparkSessionc…
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据集合,该数据集合以命名列的方式进行整合.DataFrame可以理解为关系数据库中的一张表,也可以理解为R/Pyth…
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataFrame?3.如何将普通RDD转变为DataFrame?4.如何使用DataFrame?5.在1.3.0中,提供了哪些完整的数据写入支持API? 自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQ…
概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据.有关如何配置此功能的更多信息,请参阅Hive Tables部分. DataFrames DataFrame是组织成命名列的数据的分布式集合.它在概念上等同于关系数据库中的表或R / Python中的数据框架,但是在更加优化的范围内.DataFrames可以从各种来源构建,例如:结构化数据文件,Hi…
一.实验目的 (1)       通过实验掌握 Spark SQL 的基本编程方法: (2)       熟悉 RDD 到 DataFrame 的转化方法: (3)       熟悉利用 Spark SQL 管理来自不同数据源的数据. 二.实验平台 操作系统: Ubuntu16.04 Spark 版本:2.1.0 数据库:MySQL 三.实验内容和要求 1.Spark SQL 基本操作 将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并保存命名为 emp…
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据…
一.实验目的 (1)通过实验掌握 Spark SQL 的基本编程方法: (2)熟悉 RDD 到 DataFrame 的转化方法: (3)熟悉利用 Spark SQL 管理来自不同数据源的数据. 二.实验平台 操作系统: centos6.4 Spark 版本:1.5.0 数据库:MySQL 三.实验内容 实验一 1.Spark SQL 基本操作 将下列 JSON 格式数据复制到 Linux 系统中,并保存命名为 employee.json. 为 employee.json 创建 DataFrame…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…