首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
python 机器学习库 —— featuretools(自动特征工程)
】的更多相关文章
python 机器学习库 —— featuretools(自动特征工程)
文档:https://docs.featuretools.com/#minute-quick-start 所谓自动特征工程,即是将人工特征工程的过程自动化.以 featuretools 为代表的自动特征工程在整个机器学习的端到端实践中扮演的角色如下图所示: 1. demo 导入包:import featuretools as ft 加载数据:data = ft.demo.load_mock_customer(),data 为 dict 类型 data.keys() ⇒ dict_keys(['t…
手把手教你用Python实现自动特征工程
任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置. 特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程.Prateek Joshi,是一名数据科学家,花了不少时间研究多种特征,并从不同角度分析其可行性. 现在,整个特征工程过程可实现自动化,他将通过这篇文章进行详细介绍. 下面会使用Python特征工程库Featuretools来实现这个任务.在讨论之前,我们先介绍特征工程的基本组成,再用直观例子来理解它们,最后把自动特征工程应用到…
常用python机器学习库总结
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处理,科学计算,机器学习和数据挖掘领域,有很多很多优秀的Python工具包可供使用,所以作为Pythoner,也是相当幸福的.如果仔细留意微博和论坛,你会发现很多这方面的分享,自己也Google了一下,发现也有同学总结了"Python机器学习库",不过总感觉缺少点什么.最近流行一个词,全栈工…
[Python] 机器学习库资料汇总
声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,SciPy包含的模块有最优化.线性代数.积分.插值.特殊函数.快速傅里叶变换.信号处理和图像处理.常微分方程求解和其他科…
[resource]Python机器学习库
reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: 比较成熟的(广播)函数库: 用于整合C/C++和Fortran代码的工具包: 实用的线性代数.傅里叶变换和随机数生成函数. SciPy是一个开源的Python算法库和数学工具包,S…
Python 机器学习库 NumPy 教程
0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. NumPy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素.调用mat()函数可以将数组转化为矩阵,输入命令如下: np.mat(np.random.rand(…
Auto ML自动特征工程
Auto ML自动特征工程 特征工程是在做机器学习训练的过程中必不可少的环节,特征工程就是找出对模型结果有益的特征交叉关系,通常特征工程需要耗费算法工程师大量的精力去尝试.针对这样的场景,PAI推出智能特征交叉组件,基于该组件可以帮助您锁定哪些特征的交叉是有意义的.本文介绍智能特征交叉组件的使用方法. 流程图 智能特征交叉基于深度学习框架TensorFlow开发,底层有大量并行化计算的工作,需要使用GPU.目前只有北京和上海两个区域支持该功能. 总流程图: 说明 使用首页的模板列表创建项目时,需…
Python机器学习库sklearn的安装
Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数据挖掘和数据分析. Ubuntu14.04系统上安装 安装numpy 首选需要安装numpy: pip install numpy 安装scipy $ sudo apt-get install libblas-dev liblapack-dev libatlas-bas…
Python机器学习库scikit-learn实践
原文:http://blog.csdn.net/zouxy09/article/details/48903179 一.概述 机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出.当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘.随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持.改进和推广. 以…
想搞机器学习,不会特征工程?你TM逗我那!
原文:http://dataunion.org/20276.html 作者:JasonDing1354 引言 在之前学习机器学习技术中,很少关注特征工程(Feature Engineering),然而,单纯学习机器学习的算法流程,可能仍然不会使用这些算法,尤其是应用到实际问题的时候,常常不知道怎么提取特征来建模. 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的. 特征工程的重要意义 数据特征会直接影响你使用的预测模型和实现的预测结果.准备和选择的特征越好,则实现的结果越好. 影响预测结…