一.Description The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest…
知识储备 扩展欧几里得定理 欧几里得定理 (未掌握的话请移步[扩展欧几里得]) 正题 设存在ax+by=gcd(a,b),求x,y.我们已经知道了用扩欧求解的方法是递归,终止条件是x==1,y==0: int exgcd( int a, int b, int &x, int &y ) { ) { x = ; y = ; return a; } int tmp = a % b; if( tmp > b ) swap( tmp, b ); int ans=exgcd(b,a%b,x,y)…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 这道题并没有什么难度,是让求一个数的阶乘末尾0的个数,也就是要找乘数中10的个数,…
/** *Created by xuzili at 22:12 on 2018/4/4 */ // 以上注释使用了IntelliJ Idea的File-Settings-Editor-Live Templates-User(Self)提供的/*a+tab键(自定义功能) import java.util.*; public class Main { public static void main(String[] args) { Scanner in=new Scanner(System.in)…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124 思路:每五个数1个0,5个5就2个0(不用管2,一定充足) #include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long LL; int main(void) { LL n,j; int tim,ans,t,i; scanf("%d&quo…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: Your solution should be in logarithmic…
Write an algorithm which computes the number of trailing zeros in n factorial. Have you met this question in a real interview? Yes Example 11! = 39916800, so the out should be 2 Challenge O(log N) time LeetCode上的原题,请参见我之前的博客Factorial Trailing Zeroes.…
LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { res += n / ; n /= ; } return res; } 解法二: int trailing_zeros(int n) { ? : n / + trailing_zeros(n / ); } CareerCup All in One 题目汇总…
Let f(x) be the number of zeroes at the end of x!. (Recall that x! = 1 * 2 * 3 * ... * x, and by convention, 0! = 1.) For example, f(3) = 0 because 3! = 6 has no zeroes at the end, while f(11) = 2 because 11! = 39916800 has 2 zeroes at the end. Given…