变分自编码器(Variational Autoencoder, VAE)通俗教程 转载自: http://www.dengfanxin.cn/?p=334&sukey=72885186ae5c357d85d72afd35935fd5253f8a4e53d4ad672d5321379584a6b6e02e9713966e5f908dd7020bfa0c555f dengfanxin 未来2016年11月15日 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoin…
原文地址:http://www.dengfanxin.cn/?p=334 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点.我们假定这个样本受某种神秘力量操控,但是我们也无从知道这些神秘力量是什么?那么我们假定这股神秘力量有n个,起名字叫power1,power2,…,powern 吧,他们的大小分别是z1,z2,…,zn ,称之为神秘变量表示成一个向量就是 z=⎛⎝⎜⎜⎜⎜z1z2⋮zn⎞⎠⎟⎟⎟⎟ z也起个名字叫神秘组合.…
import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image # 配置GPU或CPU设置 device = torch.device('cuda' if torch.cuda.is_available() else '…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
Agustinus Kristiadi's Blog TECH BLOG TRAVEL BLOG PORTFOLIO CONTACT ABOUT Variational Autoencoder: Intuition and Implementation There are two generative models facing neck to neck in the data generation business right now: Generative Adversarial Nets…
参考: https://www.cnblogs.com/huangshiyu13/p/6209016.html https://zhuanlan.zhihu.com/p/25401928 https://blog.csdn.net/ustbfym/article/details/78870990 https://blog.csdn.net/StreamRock/article/details/81258543 https://blog.csdn.net/weixin_40955254/artic…
https://www.zhihu.com/question/41490383/answer/103006793 自编码是一种表示学习的技术,是deep learning的核心问题 让输入等于输出,取中间的一层作为embedding, 即编码 对中间的隐层进行约束,就可以得到不同类型的编码 h<x,这就是普通的降维编码 h>x, 并且约束其稀疏性,就得到稀疏编码 自编码网络,可以理解为, 完成训练后,Decoder部分就没有用了 堆叠自编码器(Stacked Auto-Encoder, SAE…
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自…
EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然. 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训练集的对数边际似然L(D; θ),可以估计出最优的参数θ∗.然而计算边际似然函数时涉及p(x) 的推断问题,需要在对数函数的内部进行求和(或积分) 注意到,对数边际似然log p(x; θ) 可以分解为 其中DKL(q(z)∥p(z|x; θ))为分布q(z)和后验分布p(z|x; θ)的KL散度. 由于DKL(q(…
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 引言 这篇博文主要是对论文“Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embe…