1.神经网络工具箱概述 Matlab神经网络工具箱几乎包含了现有神经网络的最新成果,神经网络工具箱模型包括感知器.线性网络.BP网络.径向基函数网络.竞争型神经网络.自组织网络和学习向量量化网络.反馈网络.本文只介绍BP神经网络工具箱. 2.BP神经网络工具箱介绍 BP神经网络学习规则是不断地调整神经网络的权值和偏值,使得网络输出的均方误差和最小.下面是关于一些BP神经网络的创建和训练的名称: (1)newff:创建一前馈BP网络(隐含层只有一层) (2)newcf:创建一多层前馈BP网络(隐含…
基本就三个函数: newff():创建一个bp神经网络 train():训练函数 sim():仿真函数 同时具有可视化界面,但目前不知道可视化界面如何进行仿真,且设置不太全 工具箱:Neural net fitting textread使用方法:http://blog.sina.com.cn/s/blog_9e67285801010bju.html ex1. clear; clc; %注意P矩阵,matlab默认将一列作为一个输入 P=[0.5152 0.8173 1.0000 ; 0.8173…
BP神经网络介绍 神经网络是机器学习中一种常见的数学模型,通过构建类似于大脑神经突触联接的结构,来进行信息处理.在应用神经网络的过程中,处理信息的单元一般分为三类:输入单元.输出单元和隐含单元. 顾名思义:输入单元接受外部给的信号与数据:输出单元实现系统处理结果的输出:隐含单元处在输入和输出单元之间,从网络系统外部是无法观测到隐含单元的结构的.除了上述三个处理信息的单元之外,神经元间的连接强度大小由权值等参数来决定. 图为BP神经网络结构:(图片均为截图来的笔记,蒟蒻手动狗头) 单个神经元的工作…
本文学习笔记是自己的理解,如有错误的地方,请大家指正批评.共同进步.谢谢! 之前的教学质量评价,仅仅是通过对教学指标的简单处理.如求平均值或人为的给出各指标的权值来加权求和,其评价结果带有非常大主观性.利用BP神经网络建立教学质量评价系统的模型,通过调查分析得到教学评价指标.将其标量化成确定的数据作为其输入,用BP神经网络训练后作为实际输出,将之前得到的教学效果作为期望输出.比較期望输出与实际输出的误差.当误差达到期望的最小值时,觉得训练成功. 训练成功后能够得到比較准确的权值和阈值.用训练成功…
%%%做系统识别很重要,方法上完全符合系统识别最基础的理论 function [sun]=main(n) fplot(,],'r'); x=ones(n+,); :n+ x(j+)=cos(pi*(n+-j)/(n+)); end first=ones(n+,); f=./(x+); %原函数 last=first; :n+ last(j)=(-)*last(j-); end A=ones(n+,n+); A(:,)=first; A(:,n+)=last; :n+ :j A(:,j)=x.*A…
2.1 案例背景 在工程应用中经常会遇到一些复杂的非线性系统,这些系统状态方程复杂,难以用数学方法准确建模.在这种情况下,可以建立BP神经网络表达这些非线性系统.该方法把未知系统看成是一个黑箱,首先用系统输入输出数据训练BP神经网络,使网络能够表达该未知函数,然后用训练好的BP神经网络预测系统输出. 本章拟合的非线性函数为\[y = {x_1}^2 + {x_2}^2\]该函数的图形如下图所示. t=-5:0.1:5; [x1,x2] =meshgrid(t); y=x1.^2+x2.^2; s…
1 贝叶斯网络在地学中的应用 1 1.1基本原理及发展过程 1 1.2 具体的研究与应用 4 2 BP神经网络在地学中的应用 6 2.1BP神经网络简介 6 2.2基本原理 7 2.3 在地学中的具体应用与研究 9 结论 11 参考文献 12 1 贝叶斯网络在地学中的应用 贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,而贝叶斯公式则是这个概率网络的基础.贝叶斯网络是基于概率推理的数学模型,所谓概率推理就是通过一些变量的信息来获取其他的概率信息的过程,基于概率推理的贝叶斯网络(Bayes…
原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域.接下来介绍BP神经网络的原理及实现. Contents   1. BP神经网络的认识   2. 隐含层的选取   3. 正向传递子过程   4. 反向传递子过程   5. BP神经网络的注意点   6. BP神经网络的C++实现 1. BP神经网络的认识    …
BP神经网络是包含多个隐含层的网络,具备处理线性不可分问题的能力.以往主要是没有适合多层神经网络的学习算法,,所以神经网络的研究一直处于低迷期. 20世纪80年代中期,Rumelhart,McClelland等成立了Parallel Distributed Procession(PDP)小组,提出了著名的误差反向传播算法(Error Back Propagtion,BP). BP和径向基网络属于多层前向神经网络.广泛应用于分类识别.逼近.回归.压缩等领域. BP神经网络(强调是用BP算法)一般是…
3.1 案例背景 遗传算法(Genetic Algorithms)是一种模拟自然界遗传机制和生物进化论而形成的一种并行随机搜索最优化方法. 其基本要素包括:染色体编码方法.适应度函数.遗传操作和运行参数. 非线性函数:$y=x_{1}^{2}+x_{2}^{2}$ 3.2 模型建立 3.2.1 算法流程 遗传算法优化使用遗传算法优化BP神经网络的权值和阔值,种群中的每个个体都包含了一 个网络所有权值和阔值,个体通过适应度函数计算个体适应度值,遗传算法通过选择.交叉和变异操作找到最优适应度值对应个…