首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
洛谷 P3285 [SCOI2014]方伯伯的OJ
】的更多相关文章
洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树
洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户,编号为 \(1 \sim n\),一开始他们按照编号排名. 方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号: \(1\).操作格式为 \(1\ x\ y\),意味着将编号为$ x$ 的用户编号改为 \(y\) ,而排名不变,执行完该操作后需要输出该用户在队列中的位置,数据保证 \(…
洛谷 P3285 [SCOI2014]方伯伯的OJ
看到这题,第一眼:平衡树水题,随便做一做好了 然后....我在花了n个小时去调试(维护平衡树父节点)之后,... 调了三个小时后,第一次失败的代码(只能查找排名为k的用户编号,不能根据编号查排名) #include<cstdio> #include<algorithm> #include<queue> #include<map> using namespace std; ],lx[],rx[],sz[],ch[][]; map<int,int>…
洛谷 P3285 - [SCOI2014]方伯伯的OJ(平衡树)
洛谷题面传送门 在酒店写的,刚了一整晚终于调出来了-- 首先考虑当 \(n\) 比较小(\(10^5\) 级别)的时候怎么解决,我们考虑将所有用户按排名为关键字建立二叉排序树,我们同时再用一个 map 维护下编号为 \(x\) 的用户在原平衡树上对应的节点编号是什么.那么对于每次操作我们需进行的操作如下: \(1\) 类操作:直接在 map 中找到 \(x\) 对应的节点编号,将该节点对应的用户编号改为 \(y\),同时更新 map 中用户编号为 \(y\) 对应的节点编号. \(2\) 类操作…
洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一下. 首先根据数据范围和部分题意,不难看出是数位dp. 但是和常规的数位dp不同,我们并不知道每个数字最后的集结点. 于是我们不妨钦定所有石子最后都聚在最低位(第一位).此时的总代价记作\(cost\),可以通过一次简单的数位dp得到. 但这样显然不是最优解,对于有的数,石子聚在更高位代价更少.于是…
luogu P3285 [SCOI2014]方伯伯的OJ splay 线段树
LINK:方伯伯的OJ 一道稍有质量的线段树题目.不写LCT splay这辈子是不会单独写的 真的! 喜闻乐见的是 题目迷惑选手 \(op==1\) 查改用户在序列中的位置 题目压根没说位置啊 只有排名和编号 LOJ上写的是 用户在排名中的位置. 这说的不就是排名么. 至此四个操作 分别为 修改编号查排名 查排名修改排名为第一位 查排名修改排名到最后一位 查排名为k的编号. splay的做法 大概是分裂splay和动态开点splay 很好都不会. 直接考虑线段树 因为可以注意到操作只有1e5个…
洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)
洛谷题面传送门 怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法. 首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价.对于这类涉及区间操作问题,果断往差分序列方向想,我们记 \(d_i=a_i-a_{i+1}\),那么我们肯定会想将所有 \(d\) 都变成非正的,而一次操作肯定会将某个 \(d_i\) 减 \(1\),并选择将某个 \(d_i\) 加 \(1\)(当然也可以不操作).加一肯定是不优的,因此我们每次肯定会选择最右边…
洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚举$i$表示考虑到第$i$个玉米,设$dp[j][k]$表示为$j$,$i$被覆盖次数为$k$时的最大长度,那么不难发现$j=h[i]+k$ 那么很明显转移是$dp[j][k]=max\{dp[a][b]\}(a\leq j,b\leq k)$(因为它左边的覆盖次数不可能大于它,而且得满足是一个单调…
洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)
纪念博客又一次爆炸了 首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低.又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的 那么我们这时候就需要考虑一个退流的过程 对于原图每一条\(u->v,c>0\)的边,我们在新图中建一条\(v->u,价值是a-d\) 表示退这个流要花费的费用,相当于退流的过程 对于原图任意一条\(u->v\)的边,我们在新图中建一条\(u->v,价值是b+d\)的边,相当于扩流的过程 那么只有成环的时候,才能满足流量平衡…
BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap
3595: [Scoi2014]方伯伯的Oj Time Limit: 6 Sec Memory Limit: 256 MBSubmit: 102 Solved: 54[Submit][Status] Description 方伯伯正在做他的Oj.现在他在处理Oj上的用户排名问题. Oj上注册了n个用户,编号为1-”,一开始他们按照编号排名.方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号: 1.操作格式为1 x y,意味着将编号为z的用户编号改为V,而排名不变,执行完该操作后需…
洛谷 P3285 / loj 2212 [SCOI2014] 方伯伯的 OJ 题解【平衡树】【线段树】
平衡树分裂钛好玩辣! 题目描述 方伯伯正在做他的 OJ.现在他在处理 OJ 上的用户排名问题. OJ 上注册了 \(n\) 个用户,编号为 \(1\sim n\),一开始他们按照编号排名.方伯伯会按照心情对这些用户做以下四种操作,修改用户的排名和编号: 操作格式为 1 x y,意味着将编号为 \(x\) 的用户编号改为 \(y\),而排名不变,执行完该操作后需要输出该用户在排名中的位置,数据保证 \(x\) 必然出现在排名中,同时 \(y\) 是一个当前不在排名中的编号. 操作格式为 2 x,意…