zoj 2532 Internship【最小割】】的更多相关文章

求最小割的问题. 题意:已知网络中有n个源点,m的中转站(也就是节点),一个汇点(编号为0).给出网络,求一些边(增大这个边就可以增大汇点流量的边). 思路:一开始代码只找了有流=0就加入输出数组的情况,然而忽略了流向一条S->T的流有多个边权=0的情况,此时只增大一条边的值是没用的. 所以除了用一次最大流算法后,还需要用两次dfs分别从超级源点S和汇点T开始搜索,这样就可以把有多个0-0-0和单个边权为0的情况判断出来. #include <cstdio> #include <c…
Internship Time Limit: 5000ms Memory Limit: 32768KB This problem will be judged on ZJU. Original ID: 2532 64-bit integer IO format: %lld      Java class name: Main   CIA headquarter collects data from across the country through its classified network…
算法: 先求出残量网络,计算出从src能够到的点集A,再求出能够到dst的点集B,如果所有点都被访问到了,那么割就是唯一的,即(A,B),否则(A,V-A)和(V-B,B)都是最小割. (注意因为割的本质是有向边集,而不是点集V的划分,所以(A,V-A)和(V-B,B)有可能本质上还是同一个最小割,比如随便再加一个孤立点,虽然割还是唯一的,但还是有点没有被访问到,所以我们限制原图中所有点要么可以从src到达,要么可以到达dst) #include <cstdio> #include <c…
就是求哪些边在最大流上满流,也就是找割边.把0作为t点,s向所有的1~n连流量为inf的边,其他的边按照流量连.跑一遍最大流,从s顺着有残余流量的正向边dfs打标记fr,从t顺着正向边有残余流量的反向边dfs打标记to,那么满足条件的边就是两端点分别有fr和to标记并且满流(这里只考虑正向边),因为这意味着在这条边上增加流量就可以再流一条增广路. 注意一下输出格式,行末不能有空格. #include<iostream> #include<cstdio> #include<qu…
Internship Time Limit: 5 Seconds      Memory Limit: 32768 KB CIA headquarter collects data from across the country through its classified network. They have been usingoptical fibres long before it's been deployed on any civilian projects. However the…
Description CIA headquarter collects data from across the country through its classified network. They have been using optical fibres long before it's been deployed on any civilian projects. However they are still under a lot pressure recently becaus…
题目大意 给一个无向图,包含 N 个点和 M 条边,问最少删掉多少条边使得图分为不连通的两个部分,图中有重边 数据范围:2<=N<=500, 0<=M<=N*(N-1)/2 做法分析 典型的无向图全局最小割,使用 Stoer-Wagner 算法 Stoer-Wagner 算法共执行 n-1 次 BFS,每次 BFS 得到一个当前图的最小 S-T 割,并且将最后 BFS 的两个点缩点,n-1 次 BFS 得到 n-1 个最小 S-T 割中的最小者就是整个无向图的全局最小割,为了讲述每…
Network Wars Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge Network of Byteland consists of n servers, connected by m optical cables. Each cable connects two servers and can transmit data in both directions. Two servers of the n…
胡伯涛的<最小割模型在信息学竞赛中的应用>写的真牛. 这道题是选择一些男孩和女孩参加party,邀请的男孩女孩之间不能有 8g,图就是个明显的二分图,就是选择一些点之间没有8g关系,就是二分匹配里的最大独立集,但是要求选出的点的权值最大,就是最小割模型里的最大点权独立集了, 最大点权独立集+最小点权覆盖集=图的总权值,这里跟二分匹配一样求出最小点权覆盖就可以,求出最小割后,从原点深搜,流量>0的边才可以走,搜到的左边的点都是要选的点,搜不到的右边的带点也是要选的,最小割就是我们要去掉点的…
题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边(当然要把不是割边的满流边筛掉).这种主观臆断的naive想法是不行的,因为那个判断关键割边的条件只是个充分条件,我们没法证明它是个充要条件. 正确思路:求完最大流后在残留网络中从S点开始dfs遍历,再把残留网络反向,然后从T点开始dfs遍历,如果能遍历到所有点则最小割唯一. 代码 #include…