bzoj 2127 happiness【最小割+dinic】】的更多相关文章

2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Discuss] Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板…
happiness: Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大. Input 第一行两个正整数n,m.接下来是六个矩阵第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜…
Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 2350  Solved: 1138[Submit][Status][Discuss] Description 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值.作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的…
参考:https://www.cnblogs.com/chenyushuo/p/5144957.html 不得不说这个建图方法真是非常妙啊 假设S点选理,T点选文,a[i][j]为(i,j)选文收益,b[i][j]为(i,j)选理收益,c[i][j]为同时选文收益,d[i][j]为同时选文收益. 那么对于每个点x=(i+1)*m+j,我们连接 \[ c[s,x]=b[i][j] \] \[ c[x,t]=a[i][j] \] 对于有利益相关的x,y两点,连接 \[ c[s,x]=d[i][j]/…
题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建图.首先使用最小割,就是先加上所有可能获得的权值,再减去最小割(即不能获得的权值). 如果一个人学理,就要割掉与 S 相连的边,那么就是要割掉学文的收益.于是,对于每个点,从 S 向它连边,权值为它学文的收益. 同理,对于每个点,从它向 T 连边,权值为它学理的收益. 对于两个相邻的人,他们有同时学…
题面 BZOJ传送门 Luogu传送门 分析 这道题又出现了二元关系,于是我们只需要解方程确定怎么连边就行了 假设跟SSS分在一块是选文科,跟TTT分在一块是选理科,先加上所有的收益,再来考虑如何让需要减去的代价最小.我们来看看代价的方程 定义AAA表示选文科的收益,BBB表示选理科的收益,有: a+b=Ax+Ay+Ax,y\large a+b=A_x+A_y+A_{x,y}a+b=Ax​+Ay​+Ax,y​ c+d=Bx+By+Bx,y\large c+d=B_x+B_y+B_{x,y}c+d…
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文科或者理科,那么他们又将收获一些喜悦值. 作为计算机竞赛教练的scp大老板,想知道如何分配可以使得全班的喜悦值总和最大. 输入输出格式 输入格式: 第一行两个正整数n,m. 接下来是六个矩阵 第一个矩阵为n行m列 此矩阵的第i行第j列的数字表示座位在第i行第j列的同学选择文科获得的喜悦值. 第二个矩…
都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前层 第i层的每个点向第i+d层的与其相邻点\( \left | x_i-x_{i+d} \right |+\left | y_i-y_{i+d} \right |==1 \)连容量为inf的边,即割断i+d这层以及以下各层需要inf的费用,相当于防止相邻点的\( f(i,j) \)值选择差大于等于d…
这个题太恶心了...并不想继续做了... 本代码在bzoj上TLE! 大致说一下思路: 建立ST,首先由S连边(S,u,a)a代表学文的分数,连向T(u,T,b)b表示学理的分数,这样构造出了两个人独立的分数. 然后考虑联合分数,对于相邻的两个点xy,看下图(盗个图: 设xy都学文的分数为w1,都学理的分数为w2,则a=w1/2,b=w1/2,c=w2/2,d=w2/2,e=(w1+w2)/2,每一种割与其对应的亏损分数如下: a+b -w1 都学理->w2 c+d -w2 都学文->w1 a…
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求最小割.然后从s沿着有剩余流量的边dfs,把dfs到的点都与(|)上1,因为是与,所以即使操作到了已知mark的点也没关系. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\(u\in S,v\in T,val(u,v) \)的值最小.也就是说,在这道题中的意义就是在当前位使最少…