第4节 hive调优:2、数据倾斜】的更多相关文章

数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99%,在任务监控页面中发现只有几个 reduce 子任务未完成: 2.单一 reduce 记录与平均记录数差异过大(大于3倍),最长时长>>平均时长: 3.job数多的,效率低,多次关联后,产生几个jobs,起码半小时以上才跑完: 二.原因 1.key分布不均: 2.业务数据本身问题: 3.建表有问…
数据的倾斜: 主要就是合理的控制我们的map个数以及reduce个数 第一个问题:maptask的个数怎么定的???与我们文件的block块相关,默认一个block块就是对应一个maptask 第二个问题:reduceTask的个数怎么定的???是我们自己手动设置的,爱设几个设几个,没人管你 第三个问题:是不是maptask的个数越多越好:不一定:有时候有些小文件,都要启动一个maptask,分配资源的时间超过了数据处理的时间 减少mapTask的个数:设置map端的小文件合并:使用combin…
hive的调优:第一个调优:fetch抓取,能够避免使用mr的,就尽量不要用mr,因为mr太慢了 set hive.fetch.task.conversion=more 表示我们的全局查找,字段查找,limit查找都不走mr 这个属性配置有三个取值 more minimal none 如果配置成none,所有的都要走mr程序 hive的本地模式: set hive.exec.mode.local.auto=true 开启本地模式,解决多个小文件输入的时候,分配资源时间超过数据的计算时间 set…
摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要…
调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时.这种情况很常见. 原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异常栈,是我…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…
数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 key 对应的数据量不同导致不同 task 处理的数据量不同 注意:数据倾斜与数据过量不同,数据倾斜是某几个 task 处理的数据量很大,数据过量是所有 task 处理的数据量都很大 数据倾斜的表现 大部分 task 都快速执行完毕,少数 task 执行缓慢,甚至报错 OOM,即使最终运行完毕,也…
什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 如果数据倾斜不能解决,其他的优化手段再逆天都白搭,如同短板效应,任务完成的效率不是看最快的task,而是最慢的那一个. 数据倾导致的后果: 数据倾斜直接可能会导致一种情况:Out Of Memory 或者GC 超时. 任务不一定失败,但是极端慢.(但是目前我遇到的数据倾斜…
执行如下截图中的语句时卡住了: 原因:yarn未启动,hive底层是要提交mapreduce到yarn上才能计算结果的. 之前启动yarn时,未执行jps查看是否已经启动.其实未启动成功: [root@node01 ~]# start-yarn.sh starting yarn daemons resourcemanager running as process 3220. Stop it first. 具体原因未知. 解决方法:重新启动dfs.yarn.jobhistory.  …
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 案例实操 数据倾斜 Map数 小文件进行合并 复杂文件增加Map数 Reduce数 并行执行 严格模式 JVM重用 推测执行 执行计划(Explain) Fetch抓取 Fetch抓取是指:Hive中对某些情况的查询可以不必使用MapReduce计算 例如:SELECT * FROM employ…