已知$f(x)=e^x-\dfrac{1}{2}ax^2-b$(1)当$a=1,b=1$时,求$f(x)$在$[-1,1]$上的值域.(2)若对于任意实数$x$,$f(x)\ge0$恒成立,求$a+b$的最大值 解答:(1)略,(2)由题意$\dfrac{1}{2}ax^2+b\le e^x$,必要性:令$x=-\sqrt{2},a=-\dfrac{e^{-\sqrt{2}}}{\sqrt{2}}$则$a+b\le e^{-\sqrt{2}}$, 下证充分性$f^{'}(x)=e^x-ax=e^…