bzoj3625】的更多相关文章

[bzoj3625]小朋友与二叉树 题意 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树. 考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的.…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以考虑生成函数. 设F(x)为f(n)的生成函数,G(x)为c(n)的生成函数,G(x)中含有xa项表示存在ci=a.于是可得F(x)=F2(x)G(x)+1.+1是因为枚举根的权值时没有考虑空树即根没有权值的情况. 可以解出F(x)={1±√[1-4G(x)]}/2G(x)=2/{1±√[1-4G(…
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\frac{2}{\sqrt{-4A(x)+1}+1}\] 题解 多项式开方+多项式求逆模板题 我之前写的多项式求逆很丑,常数大的惊人 成功拿到洛谷模板题倒数第一的速度 于是,我学习了一波Gay神的写法 写了一下这道题目 具体的细节暂时不写了,以后肯定有机会的写的(这点我可以保证) #include<ios…
3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 650  Solved: 283[Submit][Status][Discuss] Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们…
Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树.考虑一个含有n个互异正整数的序列c[1],c[2],...,c[n].如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合{c[1],c[2],...,c[n]}中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和.给出一个整数m,你能对于任意的s(1<=s<=m)计算出权值为s的神犇二叉树的个数吗?请参照样例以更好的理解什么样的两棵二叉树会被视为不同的.我们只需要知道答案关于9…
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: Expected 'EOF', got '\inC' at position 4: v_i\̲i̲n̲C̲=\{a_1,a_2,...a-,定义一棵树的权值为所有点的权值之和,问有多少棵树满足其权值等于i(i=1,2,...,m)i(i=1,2,...,m)i(i=1,2,...,m) 对每个点的…
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$[x^n]F(x)=\sum_{i=0}^{n}[x^i]G(x)\sum_{j=0}^{n-i}[x^j]F(j)\times [x^{n-j-i}]F(n-j-i)$. (这个式子的意思就是说,不妨设当前根节点的权值为i,然后枚举左右两个子树的权值) 这个式子显然可以通过动规的方式去推,从而得出…
传送门 Sol 设 \(f_x\) 表示权值为 \(x\) 的二叉树的个数 设 \(s_x\) 表示是否有 \(x\) 这种权值可以选择 那么 \[f_n=\sum_{i=0}^{n}\sum_{j=0}^{n-i}f_jf_{n-i-j}s_i\] 构造 \[F(x)=\sum_{i=0}f_ix^i\] \[S(x)=\sum_{i=0}s_ix^i\] 由于 \(s_0=0,f_0=1\) 那么 \(F^2(x)S(x)=F(x)-1\) 所以可以求得 \[F(x)=\frac{1\pm…