听说你的模型损失是NaN】的更多相关文章

听说你的模型损失是NaN 有时候,模型跑着跑着,损失就莫名变NaN了.不过,经验告诉我们,大部分NaN主要是因为除数是0或者传给log的数值不大于0.下面说说是log出NaN的几种常见解决方法. 毕竟, 计算机的是无法表示所有实数的,尽管有些函数得出的结果只能无限近似0,但是由于计算机精度问题,最后的结果往往被表示为0.比如sigmoid函数,取值在0到1之间. 下面介绍TensorFlow的解决log出NaN的常见方法: 方法1:在保证传给log的数值不会有负数的情况下,可以直接加一个比较小的…
AI面试必备/深度学习100问1-50题答案解析 2018年09月04日 15:42:07 刀客123 阅读数 2020更多 分类专栏: 机器学习   转载:https://blog.csdn.net/T7SFOKzorD1JAYMSFk4/article/details/80972658 1.梯度下降算法的正确步骤,(正确步骤dcaeb)(梯度下降法其实是根据函数的梯度来确定函数的极小值),这里的问题与其说是梯度下降算法的步骤不如说类似图图像分类训练的整个流程:网络初始化-输入to输出-期望输…
MindSpore模型精度调优实践 引论:在模型的开发过程中,精度达不到预期常常让人头疼.为了帮助用户解决模型调试调优的问题,为MindSpore量身定做了可视化调试调优组件:MindInsight.还梳理了针对常见精度问题的调试调优指南,将以"MindSpore模型精度调优实战"系列文章的形式分享出来,希望能帮助用户轻松定位精度问题,快速优化模型精度. 本文将分析精度问题的常见现象和原因,并给出一个整体的调优思路.本文分享假设脚本已经能够运行并算出loss值.如果脚本还不能运行,请先…
摘要:为大家梳理了针对常见精度问题的调试调优指南,将以"MindSpore模型精度调优实战"系列文章的形式分享出来,帮助大家轻松定位精度问题,快速优化模型精度. 本文分享自华为云社区<技术干货 | 更快定位精度问题!MindSpore模型精度调优实战(一)>,原文作者:HWCloudAI . 引言: 在模型的开发过程中,精度达不到预期常常让人头疼.为了帮助大家解决模型调试调优的问题,我们为MindSpore量身定做了可视化调试调优组件:MindInsight. 还为大家梳理…
对css有一定了解的同学一定听说过盒模型,在这里以我自己的一点儿了解和认知来解释一下盒模型与盒模型在低版本IE浏览器下与其他浏览器下的区别. W3c标准下的盒模型 盒模型由 content(内容),padding(内填充),border(边框),margin(外边距)组成. 对div盒子定义宽高时,只定义content中的内容. 比如对一个盒子分别设置宽高,padding值,margin值,border值. div{ height: 200px; width: 200px; margin: 30…
在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long Short-Term Memory),它可以避免常规RNN的梯度消失,因此在工业界得到了广泛的应用.下面我们就对LSTM模型做一个总结. 1. 从RNN到LSTM 在RNN模型里,我们讲到了RNN具有如下的结构,每个序列索引位置t都有一个隐藏状态$h^{(t)}$. 如果我们略去每层都有的$o^{(…
AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类.层自左向右.自上向下读取,关联层分为一组,高度.宽度减小,深度增加.深度增加减少网络计算量. 训练模型数据集 Stanford计算机视觉站点Stanford Dogs http://vision.stanford.edu/aditya86/ImageNetDogs/ .数据下载解压到模型代码同一路径imagenet-dogs目录下.包含的120种狗图像.80%训练,20%测试.产品模型需要预留原始数据交叉验…
原文链接:https://developers.google.com/machine-learning/crash-course/reducing-loss/ 为了训练模型,需要一种可降低模型损失的好方法.迭代方法是一种广泛用于降低损失的方法,而且使用起来简单有效. 1- 迭代方法 用于训练模型的迭代试错过程(迭代方法): 迭代策略可以很好地扩展到大型数据集,因此在机器学习中的应用非常普遍. “模型”部分将一个或多个特征作为输入,然后返回一个预测作为输出. “计算损失”部分是模型将要使用的损失函…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
https://mp.weixin.qq.com/s/JwRXBNmXBaQM2GK6BDRqMw 选自GitHub 作者:Artur Suilin 机器之心编译 参与:蒋思源.路雪.黄小天 近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com…