什么时候适合用机器学习算法? 1.存在某种规则/模式,能够使性能提升,比如准确率: 2.这种规则难以程序化定义,人难以给出准确定义: 3.存在能够反映这种规则的资料. 所以,机器学习就是设计算法A,从包含许多假设的假设集合H里,根据所给的数据集D,选出和实际规则f最为相似的假设g. 注:g和f相似度的衡量是基于所有数据,不仅仅是D. Learning Model = A + H, A确定后,H形式也给出, W的变化构成不同的属于H的h.…
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 一.What is Machine Learning Q:什么是“学习”? A:学习就是人类通过观察.积累经验,掌握某项技能或能力.就好像我们从小学习识别字母.认识汉字,就是学习的过程. 机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,…
原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即用一条线/一个面/一个超平面将1.2维/3维/4维及以上数据集根据标签的不同一分为二.算法确定后,根据\(W\)取值的不同形成不同的\(h\),构成假设集合\(H\).如2维感知器算法,根据\(w_0\),\(w_1\),\(w_2\)的不同取值,构成了不同的\(h\),这些\(h\)最终构成\(H…
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 每个部分由四节课组成,总共有16节课.那么,从这篇开始,我们将连续对这门课做课程笔记,共16篇,希望能对正在看这们课的童鞋有所帮助.下面开始第一节课的笔记:The Learning Problem. 一.What…
机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接近于目标函数 \(f(x)\). 问题:这种预测是可能的么?其泛化性的本质是什么?是什么保证了 \(h(x) \approx f(x)\) ? Probability to the Rescue 情景:有一个装有很多很多珠子的罐子,珠子的颜色是橙色和绿色,那么我们可以通过抽样的方法来估计橙色珠子的比…
机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label Learning with Different Protocol Learning with Different Input Space…
这节课是最后一节,讲的是做机器学习的三个原则. 第一个是Occan's razor,即越简单越好.接着解释了什么是简单的hypothesis,什么是简单的model.关于为什么越简单越好,林老师从大致思想 上进行了解释:如果一个简单的模型能对数据分得很好,那说明输入的资料是有规律的资料(这被称为资料具有显著性significant):对于复杂的模型来说,不是资料怎么样,都可以分的较好,这样 的资料不具备显著性.那做机器学习的方向就是,先做简单的线性模型,不行再做其他的. 第二个是sampling…
原文地址:https://www.jianshu.com/p/bd7cb6c78e5e 什么时候适合用机器学习算法? 存在某种规则/模式,能够使性能提升,比如准确率: 这种规则难以程序化定义,人难以给出准确定义: 存在能够反映这种规则的资料. 所以,机器学习就是设计算法\(A\),从包含许多假设的假设集合\(H\)里,根据所给的数据集\(D\),选出和实际规则\(f\)最为相似的假设\(g\). \(g\)和\(f\)相似度的衡量是基于所有数据,不仅仅是\(D\). \(Learning \ M…
上节课介绍了机器学习可以分为不同的类型.其中,监督式学习中的二元分类和回归分析是最常见的也是最重要的机器学习问题.本节课,我们将介绍机器学习的可行性,讨论问题是否可以使用机器学习来解决. 一.Learning is Impossible 首先,考虑这样一个例子,如下图所示,有3个label为-1的九宫格和3个label为+1的九宫格.根据这6个样本,提取相应label下的特征,预测右边九宫格是属于-1还是+1?结果是,如果依据对称性,我们会把它归为+1:如果依据九宫格左上角是否是黑色,我们会把它…
上节课我们主要介绍了解决线性分类问题的一个简单的方法:PLA.PLA能够在平面中选择一条直线将样本数据完全正确分类.而对于线性不可分的情况,可以使用Pocket Algorithm来处理.本节课将主要介绍一下机器学习有哪些种类,并进行归纳. 一.Learning with Different Output Space Y(根据输入空间变化划分) 银行根据用户个人情况判断是否给他发信用卡的例子,这是一个典型的二元分类(binary classification)问题.也就是说输出只有两个,一般y=…