machine learning 之 多元线性回归】的更多相关文章

整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient descent for MLR Feature Scaling and Mean Normalization Ensure gradient descent work correctly Features and polynomial regression Normal Equation Vectoriza…
模型 假定有i组输入输出数据.输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训练集(training set). 假定\(X\)有j个特征,则可以用集合\({x^i_1,x^i_2,\dots ,x^i_j}\)表示. 为了描述模型,要建立假设方程(hypothesis function) : $ h:X\to Y$. \(h_\theta (x) = \theta_0 +…
单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法(取自 百度百科). 例如:现在有一堆散乱的点,想找出一个一元一次方程来让这些点的分布误差最小(就是找出一条最合适的直线来贯穿这些点). 图中红色直线就是我们需要找的线.这条直线的表示为: y=ax+b.那么找出a.b这两个变量最合适的值就叫线性回归. 在图片中,蓝色的点用(xi,yi)来表示.m…
本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation (8 min).mkv 本课程讲解的第一个算法为"回归算法",本节将要讲解到底什么是Model.下面,以一个房屋交易问题为例开始讲解,如下图所示(从中可以看到监督学习的基本流程). 所使用的数据集为俄勒冈州波特兰市的住房价格,根据数据集中的不同房屋尺寸所对应的出售价格,绘制出了数据集:假如…
    最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]     最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归) [数据]     1.准备一个ex1data1.txt,第一列为年龄,第二列为价格     2.导入matla…
在之前的文章<机器学习---线性回归(Machine Learning Linear Regression)>中说到,使用最小二乘回归模型需要满足一些假设条件.但是这些假设条件却往往是人们容易忽略的地方.如果不考虑模型的适用情况,就只会得到错误的模型.下面来看一下,使用最小二乘回归模型需要满足哪些假设,以及如果不满足这些假设条件会产生怎样的后果. 最小二乘回归模型的5个基本假设: 自变量(X)和因变量(y)线性相关 自变量(X)之间相互独立 误差项(ε)之间相互独立 误差项(ε)呈正态分布,期…
一.原理和概念 1.回归 回归最简单的定义是,给出一个点集D,用一个函数去拟合这个点集.而且使得点集与拟合函数间的误差最小,假设这个函数曲线是一条直线,那就被称为线性回归:假设曲线是一条二次曲线,就被称为二次回归. 以下仅介绍线性回归的基本实现. 2.假设函数.误差.代价函数 参考  Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归) 最小化误差一般有两个方法:最小二乘法和梯度下降法 最小二乘法可以一步到位,…
在<机器学习---线性回归(Machine Learning Linear Regression)>一文中,我们主要介绍了最小二乘线性回归算法以及简单地介绍了梯度下降法.现在,让我们来实践一下吧. 先来回顾一下用最小二乘法求解参数的公式:. (其中:,,) 再来看一下随机梯度下降法(Stochastic Gradient Descent)的算法步骤: 除了算法中所需的超参数α(学习速率,代码中写为lr)和epsilon(误差值),我们增加了另一个超参数epoch(迭代次数).此外,为方便起见,…
<Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K-近邻(KNN).贝叶斯分类,读者可根据以下内容自行"充电"(持续更新中): <Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM: https://www.zybuluo.com/tianxingjian/note/1755051…
线性回归是机器学习中最基础的模型,掌握了线性回归模型,有利于以后更容易地理解其它复杂的模型. 线性回归看似简单,但是其中包含了线性代数,微积分,概率等诸多方面的知识.让我们先从最简单的形式开始. 一元线性回归(Simple Linear Regression): 假设只有一个自变量x(independent variable,也可称为输入input, 特征feature),其与因变量y(dependent variable,也可称为响应response, 目标target)之间呈线性关系,当然x…