大数据之 Spark】的更多相关文章

"决胜云计算大数据时代" Spark亚太研究院100期公益大讲堂 [第15期互动问答分享] Q1:AppClient和worker.master之间的关系是什么? AppClient是在StandAlone模式下SparkContext.runJob的时候在Client机器上应       用程序的代表.要完毕程序的registerApplication等功能. 当程序完毕注冊后Master会通过Akka发送消息给client来启动Driver: 在Driver中管理Task和控制Wo…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第13期互动问答分享] Q1:tachyon+spark框架现在有很多大公司在使用吧? Yahoo!已经在长期大规模使用: 国内也有公司在使用: Q2:impala和spark sql如何选择呢? Impala已经被官方宣布“安乐死”,被官方温柔的放弃: Spark SQL是Spark的核心子框架,同时能够和图计算.机器学习框架无缝集成,强烈推荐使用! Q3:如果有程序采用流式不停往tachyon集群写数据,但tachyon内存…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第10期互动问答分享] Q1:Spark on Yarn的运行方式是什么? Spark on Yarn的运行方式有两种:Client和Cluster模 Client模式如下所示: Cluster模式如下所示: Q2:Yarn的框架内部是如何实现的? 公开课: 上海:9月26-28日,<决胜大数据时代:Hadoop.Yarn.Spark企业级最佳实践> 北京: 10月26-28日, <决胜大数据时代:Hadoop.Yarn…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第8期互动问答分享] Q1:spark线上用什么版本好? 建议从最低使用的Spark 1.0.0版本,Spark在1.0.0开始核心API已经稳定: 从功能的角度考虑使用最新版本的Spark 1.0.2也是非常好的,Spark 1.0.2在Spark 1.0.1的基础上做了非常多的改进: Spark 1.0.2改进参考 http://spark.apache.org/releases/spark-release-1-0-2.ht…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第7期互动问答分享] Q1:Spark中的RDD到底是什么? RDD是Spark的核心抽象,可以把RDD看做“分布式函数编程语言”. RDD有以下核心特征: A list of partitions A function for computing each split A list of dependencies on other RDDs Optionally, a Partitioner for key-value RDD…
“决胜云计算大数据时代” Spark亚太研究院100期公益大讲堂 [第6期互动问答分享] Q1:spark streaming 可以不同数据流 join吗? Spark Streaming不同的数据流可以进行join操作:       Spark Streaming is an extension of the core Spark API that allows enables high-throughput, fault-tolerant stream processing of live…
1 渊源 于2009由Matei Zaharia创立了spark大数据处理和计算框架,基于内存,用scala编写. 2 部署 2.1 需要软件包 下载路径见已有博文 Jdk ——因为运行环境为jvm Python2.7 Scala2.10.4 Spark1.0.1 Hadoop stable version 如果搭建yarn的spark,需要部署yarn版本的hadoop 2.2 配置依赖 <groupId>org.apache.spark</groupId> <artifa…
第一章 Spark 性能调优 1.1 常规性能调优 1.1.1 常规性能调优一:最优资源配置 Spark性能调优的第一步,就是为任务分配更多的资源,在一定范围内,增加资源的分配与性能的提升是成正比的,实现了最优的资源配置后,在此基础上再考虑进行后面论述的性能调优策略. 资源的分配在使用脚本提交Spark任务时进行指定,标准的Spark任务提交脚本如代码清单2-1所示: 代码清单2-1 标准Spark提交脚本 /usr/opt/modules/spark/bin/spark-submit \ --…
1. Spark 内核概述 Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更好地完成Spark代码设计,并能够帮助我们准确锁定项目运行过程中出现的问题的症结所在. 1.1 Spark核心组件回顾 1.1.1 Driver Spark驱动器节点,用于执行Spark任务中的main方法,负责实际代码的执行工作.Driver在Spark作业执行时主要负…
第1章 Spark概述 1.1 什么是Spark 1.2 Spark内置模块 Spark Core:实现了Spark的基本功能,包含任务调度.内存管理.错误恢复.与存储系统交互等模块.Spark Core中还包含了对弹性分布式数据集(Resilient Distributed DataSet,简称RDD)的API定义. Spark SQL:是Spark用来操作结构化数据的程序包.通过Spark SQL,我们可以使用 SQL或者Apache Hive版本的SQL方言(HQL)来查询数据.Spark…