python主成分分析】的更多相关文章

主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维.去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关. 相关知识 介绍一个PCA的教程:A tutorial on Principal Components Analysis ——Lindsay I Smith 1.协方差 Covariance 变量X和变量Y的协方差公式如下,协方差是描述不同变量之间的相关关系,协方差>0时说…
#-*- coding: utf-8 -*- #主成分分析 降维 import pandas as pd #参数初始化 inputfile = '../data/principal_component.xls' outputfile = '../tmp/dimention.xls' #降维后的数据 data = pd.read_excel(inputfile, header = None) #读入数据 from sklearn.decomposition import PCA pca = PCA…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解…
Python股票数据分析 最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn.tushare是一款财经类数据接口包,国内的股票数据还是比较全的 官网地址:http://tushare.waditu.com/index.html#id5.seaborn则是一款绘图库,通过seaborn可以轻松地画出简洁漂亮的图表,而且库本身具有一定的统计功能. 导入的模块: import matplotlib.pyplot as plt import seaborn as sn…
Introduction 主成分分析(Principal Components Analysis)是一种对特征进行降维的方法.由于观测指标间存在相关性,将导致信息的重叠与低效,我们倾向于用少量的.尽可能多能反映原特征的新特征来替代他们,主成分分析因此产生.主成分分析可以看成是高维空间通过旋转坐标系找到最佳投影(几何上),生成新维度,其中新坐标轴每一个维度都是原维度的线性组合\(\theta'X\)(数学上),满足: 新维度特征之间的相关性尽可能小 参数空间\(\theta\)有界 方差尽可能大,…
今天,在西瓜书上看到了主成分分析法,之前建模有接触过但是理解不够深刻,今天再次和这一位老朋友聊聊. 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关.通常数学上的处…
一:引入问题 首先看一个表格,下表是某些学生的语文,数学,物理,化学成绩统计: 首先,假设这些科目成绩不相关,也就是说某一科目考多少分与其他科目没有关系,那么如何判断三个学生的优秀程度呢?首先我们一眼就能看出来,数学,物理,化学这三门课的成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数据成绩拉的最开). 那么为什么我们能一眼看出来呢? 当然是我们的坐标轴选对了!! 下面,我们继续看一个表格,下标是一组学生的数学,物理,化学,语文,历史,英语成绩统计: 那么这个表我们能一眼看出来吗?…
主成分分析(principal component analysis)是一种常见的数据降维方法,其目的是在“信息”损失较小的前提下,将高维的数据转换到低维,从而减小计算量. PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的.这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量.后面会证明,原始数据协方差矩阵的特征值越大,对应的方差越大,在对应的特征向量上投影的信息量就越大.反之,如果特…
上一篇中我们详细介绍推导了主成分分析法的原理,并基于Python通过自编函数实现了挑选主成分的过程,而在Python与R中都有比较成熟的主成分分析函数,本篇我们就对这些方法进行介绍: R 在R的基础函数中就有主成分分析法的实现函数princomp(),其主要参数如下: data:要进行主成分分析的目标数据集,数据框形式,行代表样本,列代表变量 cor:逻辑型变量,控制是否使用相关系数进行主成分分析 scores:逻辑型变量,控制是否计算每个主成分的得分 我们使用了R中自带的数据集USJudgeR…